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1. Introduction

Heat transfer continues to be a field of major interest

to engineering and scientific researchers, as well as

designers, developers, and manufacturers. Considerable

effort has been devoted to research in traditional appli-

cations such as chemical processing, general manufac-

turing, energy devices, including general power

systems, heat exchangers, and high performance gas
turbines. In addition, a significant number of papers

address topics that are at the frontiers of both funda-

mental research and important emerging applications,

such as microchannel flows, bio-heat transfer, electron-

ics cooling, semiconductors and a number of natural

phenomena ranging from upwelling currents in the

oceans to heat transport in stellar atmospheres.

The present review is intended to encompass the

English language heat transfer papers published in
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2001. While being exhaustive, some selection is neces-

sary. Many papers reviewed herein relate to the science

of heat transfer, including numerical, analytical and

experimental works. Others relate to applications where

heat transfer plays a major role in not only virtually all

man made devices, but natural systems as well. The pa-

pers are grouped into categories and then into sub-fields

within these categories. We restrict ourselves to papers

published in reviewed archival journals.

Besides reviewing the journal articles in the body of

this paper, we also mention important conferences and

meetings on heat transfer and related fields, major

awards presented in 2002, and books on heat transfer

published during the year.

The 5th ISHMT-ASME Heat and Mass Transfer

Conference was held in Calcutta, India, on 3–5 January.

Topics covered included microscale heat transfer, and

droplet heat transfer. The 2nd Mediterranean Combus-

tion Symposium on 6–11 January discussed flame struc-

ture and modeling, fires and explosions, and turbulent

combustion modeling. A meeting on Thermal Chal-

lenges in Next Generation Electronic Systems held in

Santa Fe, USA, on 13–17 January discussed, among

other subjects, challenges in micro- and nanoscale trans-

port, and novel thermal management concepts. HEFAT

2002—The 1st International Conference on Heat Trans-

fer, Fluid Mechanics and Thermodynamics was held

in Mpumalanga, South Africa on 8–10 April. The

International Center for Heat and Mass Transfer

(ICHMT) organized the 2nd International Symposium

on Micro/Nanoscale Energy Conversion and Transport

(MECT�02), on 14–19 April, in Antalya, Turkey. A

meeting on Visualization and Imaging in Transport Phe-

nomena was held in Antalya, Turkey, on 5–10 May. The

ASME Turbo Expo 2002 organized by the International

Gas Turbine Institute was held in Amsterdam, the Neth-

erlands on 3–6 June. Sessions in heat transfer discussed

film cooling, internal cooling, and transitional flows in

turbomachinery. SOLAR 2002, a meeting on solar en-

ergy was held in Reno, USA, on 15–20 June. Topics cov-

ered included non-tracking collectors, parabolic trough

collectors, solar ponds, and solar cooling and refrigera-

tion. The 8th Joint AIAA/ASME Thermophysics and

Heat Transfer Conference held in St. Louis on 24–27

June discussed, among other topics, laminar and transi-

tional flows, hypersonic flows, flows with reactions, and

microchannel heat transfer. The 12th International Heat

Transfer Conference was organized in Grenoble, France,

on 18–23 August. Papers were presented on heat transfer

under non-equilibrium conditions, heat transfer in non-

homogeneousmedia, and general applications. The Inter-

national Mechanical Engineering Congress and Exposi-

tion (IMECE) 2002 was held in New Orleans, USA, on

17–22 November. The Heat Transfer Division of ASME

organized sessions on, among other topics, thermophys-

ical properties of nano- and microscale materials and
thermal issues in their fabrication, transport phenomena

in fuel cells, and spray and droplet heat transfer.

The 2002 Heat Transfer Memorial Awards were pre-

sented to Massoud Kaviany (Science) for his research on

heat transfer in porous media, to J.-C. Han (Art) for his

contributions in the area of heat transfer in internal

cooling of gas turbines, and Roop Mahajan (General)

for his successful use of neural networks for thermal

modeling, and advancing the state of knowledge of

transport phenomena in high-porosity foams. Dr. John

Chen was awarded the 2001 Max Jakob award at the

12th International Heat Transfer Conference for his

contributions to the theory and practice of boiling heat

transfer, particularly convective and dispersed-flow film

boiling in tubes, and falling-film evaporation outside of

tubes. The 2002 Luikov medal was given to Dr. Alexan-

der Leontiev for his work on mass transfer.

Books on heat transfer published in 2002 include:

Computational Heat Transfer

Y. Jaluria, K. E. Torrance

Taylor & Francis, Inc.

Heat Transfer: A Practical Approach

Y. Cengel

McGraw-Hill Inc.

Transport Phenomena for Chemical Reactor Design

L.A. Belfiore

John Wiley & Sons, Inc.

Introduction to Thermal Systems Engineering: Thermo-

dynamics, Fluid Mechanics and Heat Transfer

M.J. Moran, H.N. Shapiro, B.R. Munson, D.P. DeWitt

John Wiley & Sons, Inc.

Fundamentals of Thermodynamics (6th edn.)

R.E. Sonntag, C. Borgnakke, G.J. Van Wylen

John Wiley & Sons, Inc.

Thermodynamics and Statistical Mechanics

J.M. Seddon, J.D. Gale

John Wiley & Sons, Inc.

Convective Heat Transfer (2nd edn.)

T. Cebeci

Springer-Verlag, Inc.

Heat Transfer in Single and Multiphase Systems

G.F. Naterer

CRC Press

Advances in Heat Transfer (Vol. 36)

J.P. Hartnett (ed.)

Elsevier Science and Technology
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Energy and Society: An Introduction

H.H. Schobert

Taylor & Francis, Inc.

Inverse Engineering Handbook

K.A. Woodbury

CRC Press

Design and Simulation of Thermal Systems

N.V. Suryanarayana, O. Arici

McGraw-Hill Inc.

Radiation Heat Transfer: A Statistical Approach

J.R. Mahan

John Wiley & Sons, Inc.

Hydrodynamics, Mass and Heat Transfer in Chemical

Engineering

A.D. Polyanin, A.M. Kutepov, D.A. Kazenin, A.V.

Vyazmin (eds.)

Taylor & Francis, Inc.

Solar Energy: Fundamentals, Design, Modelling and

Applications

G.N. Tiwari

CRC Press

Biological and Bioenvironemental Heat and Mass

Transfer

A.K. Dutta

Marcel Dekker

Transport Phenomena and Unit Operations: A Com-

bined Approach

R.G. Griskey

John Wiley & Sons, Inc.

Heat Exchangers: Selection, Rating and Thermal Design

S. Kakac, H. Liu

CRC Press

Industrial Mathematics: Case Studies in the Diffusion of

Heat and Matter

G. L. Fulford, P. Broadbridge

Cambridge University Press

Extended Surface Heat Transfer

A.D. Kraus, A. Aziz, C. L. Ratner, M. Nissenbaum, G.

M. Pape

John Wiley & Sons, Inc.

Propellants and Explosives: Thermochemical Aspects

of Combustion

N. Kubota

John Wiley & Sons, Inc.

824 R.J. Goldstein et al. / International Journal
Thermal Energy Storage: Systems and Applications

I. Dincer, M. Rosen

John Wiley & Sons, Inc.

Extended Surface Conjugate Heat Transfer

P. Heggs, S. Harris, D.B. Ingham

John Wiley & Sons, Inc.
2. Conduction

The heat transfer review in 2002 in the category of

heat conduction has approximately 75 archival articles

ranging across a broad range of themes. The various

sub-categories include: contact conduction/contact resis-

tance; microscale/nanoscale heat transport, non-Fourier

heat transport models, heat waves and pulse heating;

heat conduction in complex geometries and composites

and layered media; analytical/numerical methods and

simulations; experimental and/or comparative studies;

Thermal stresses and thermo-mechanical aspects; and

miscellaneous applications of heat conduction studies.

The relevant details of the various sub-categories are

listed below.
2.1. Contact conduction/contact resistance

The studies in this category specifically deal with ef-

fect of diamond coatings on carbide substrates [1], con-

tact conductance and constriction effects on non-flat

coated metals,change of scale effects, interface effects

due to random disk contacts, size and located contacts

[2–5], coated joints [6], and heat transfer through peri-

odic macrocontact constriction [7].
2.2. Microscale/nanoscale heat transport, non-Fourier

effects and laser/pulse heating

Most notably, this has been a topic area of utmost

research activity and increased interest with the dawn

of the new century. A variety of experimental tech-

niques, theoretical models and simulation techniques

have evolved attempting to explaining the aspects of

heat transport mechanisms at different length scales

with emphasis on the micro/nano length scale. The the-

oretical models seek to formulate new models and/or

use existing models with modifications with the argue-

ments that the classical continuum theories such as

the Fourier model cannot explain the heat transport

mechanisms at small length scales. Although the alter-

nate approaches which are primarily based on approx-

imations emanating from the Boltzmann transport

equation (BTEA) do seem to provide reasonable agree-

ment with experimental data(mostly in the context of

applications to dielectric materials), they need a few
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fitting parameters (such as some idea of the bulk mate-

rial property, the issue of approximating the elusive

relaxation times, etc.) to correlate the results. Nonethe-

less, there is no convincing evidence that the arguements

provided to resort to these alternate microscopic energy

transport models is necessary since literature in previous

years and/or more recent efforts at the time of preparing

this review strongly provides arguements to the contrary

and the reader is urged to carefully dwell into the details

to understand the pros/cons. Alternately, molecular

dynamics simulations exist in the literature and avoid

the notion of fitting parameters; however, they lack the

ability to model realistic practical situations as of this

date (high performance computing platforms and com-

putational tools may provide some relief to model

more meaningful size applications in the years to come).

Finally, experimental results are indispensible but criti-

cal studies need to be conducted for repeatability of

results and understanding the limitations/assump-

tions employed is also an important aspect. Both

space scale effects and time scales are critical in bridg-

ing the multiscale aspects for understanding heat

transport.

The various studies this year included short-pulse

laser heating effects [8–10]; hyperbolic heat conduction

and thermal waves [11–14]; constitutive models arguing

the inability of classical models to model heat transport

at small scales (certain of the issues are only being re-

cently challenged) in space and time [15–17]; studies at

interfaces and contacts [18–20]; and other analysis meth-

ods [14,21].
2.3. Heat conduction in complex geometries,

composites/layered media and fins

The studies in this sub-category included time-depen-

dent heat transfer in a fin-wall assembly and two-dimen-

sional pin fins with non-constant base temperature

[22,23]; multidimensional layered bodies [24], layered

infinite media [25], a spreadsheet solution for composite

fins [26], and a boundary integral approach for compos-

ite media [27].
2.4. Analytical/numerical methods and modelling/

simulation techniques

As in previous years, there has been continued inter-

est and activity in this sub-category. The topics range

from new developments in analysis and numerical meth-

ods and tools, application of numerical methods to

studying heat transport for a variety of applications

and the like. The numerical techniques include FD,

FE, BEM, lattice Boltzmann methods, differential trans-

forms, spectral methods, and the like. The various papers

appear in [28–47].
2.5. Experimental studies

An experimental study on thermal writing and nanoi-

maging with a heated atomic force microscope cantilever

appears in [48]. A comparative experimental and numer-

ical study on a miniature Joule–Thomson cooler for

steady-state characteristics appears in [49].

2.6. Thermal stresses and thermomechanical problems

This subcategory deals with the multiphysics issues of

the fusion of heat conduction and elasticity under the

umbrella of thermal stresses. The studies include isotro-

pic circular fins [50], cryogenic liquid rocket engines [51],

annular fins [52], numerical studies using BEM [53], and

temperature and stress fields in silver using laser picosec-

ond heating pulse [54].

2.7. Miscellaneous applications

A wide range on a variety of topics in heat conduc-

tion and application areas have also appeared in the

literature [55–73].
3. Boundary layers and external flows

Papers on boundary layers and external flows for

2002 have been categorized as follows: flows influenced

externally, flows with special geometric effects, com-

pressible and high-speed flows, analysis and modeling

techniques, unsteady flow effects, flows with film and

interfacial effects, flows with special fluid types or prop-

erty effects and flows with reactions.

3.1. External effects

Experimental results which document the effects of

freestream turbulence on heat transfer from plates were

reviewed [74]. Disparities in results from various refer-

ences were addressed. Enhancement by turbulence gen-

erated by ultrasonically induced gaseous cavitation in

CO2-saturated water was experimentally documented

[75]. The enhancement comes from destroying the vis-

cous sublayer. The effects of turbulence integral length

scale on heat transfer from a circular cylinder in cross-

flow were measured [76]. The average heat transfer coef-

ficient changed very little with the length scale change,

relative to the changes with turbulence intensity.

The effects of streamwise steps in wall temperature

and roughness on changes in origin of turbulent thermal

boundary layers were measured [77]. A model was pre-

sented for evaluating fluxes of mass or thermal energy

in urban boundary layers [78]. The naphthalene subli-

mation technique was employed to evaluate the model.

The results showed that street ventilation is less sensitive
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to depth of the street canyon when the flow is in equilib-

rium with the urban surface (developed). Enhancement

of heat transfer with Goertler vortices on a concave sur-

face was experimentally determined [79]. Steady growth

of the vortex structures induces a characteristic plateau

in the evolution of Stanton number versus Reynolds

number, until transition. The effects of a pair of longitu-

dinal streamwise-oriented vortices were measured [80].

Liquid crystal thermometry was employed. The region

of common down-flow has higher heat transfer rates

than the region of common up-flow. Non-linear instabil-

ity of the cylindrical interface between the vapor and

liquid phases of a magnetic fluid was analyzed with a

method of multiple time scale expansion [81]. The region

of stability was displayed graphically.

3.2. Geometric effects

Experiments and flow visualization were conducted

for the problem of forced convection heat transfer with

inclined and yawed round tubes [82]. It was shown that

the sensitivities to yaw and angle of attack were very

small. Experiments were conducted on a circular cylin-

der in cross-flow with non-isothermal blowing through

the wall [83]. The effects of blowing on instabilities in

the wake were described and modeled. A conjugate heat

transfer analysis was conducted for a vertical cylinder

with heat generation and axial conduction [84]. The

radial temperature distribution was shown to have a

significant effect. Heat transfer from two circular cylin-

ders in cross-flow was analyzed [85]. Effects of the place-

ment geometry were discussed. Measurements were

made of scalar transport in the region where a turbulent

wake interacts with a boundary layer [86]. Measure-

ments included instantaneous values of two components

of velocity and temperature. The effects of a wall on

heat transfer from a microcylinder near a wall were

studied numerically [87]. Applications include correc-

tions for wall effects on hot-wire anemometry. Measure-

ments were made of heat transfer around a circular

cylinder/plate combination [88]. The plate was either flat

or curved. Visualization documented the flow around

the cylinder. A model for describing the combined free

and forced convection boundary layer flow in a corner

was presented [89]. The existence of two streamwise

symmetrically disposed vortices in layers immediately

adjacent to the corner layer was noted. The effects of

vortices on a surface with dimples in supersonic flow

were measured [90]. The hollows not only intensify heat

transfer by also decrease recovery equilibrium tempera-

ture coefficients. Heat transfer over a slot-perforated flat

surface was theoretically studied [91]. The external

stream was pulsated, which led to a disturbance in the

boundary layer attributed to the presence of the slot. Li-

quid crystal thermometry was used to document the ef-

fects on heat transfer of surface-mounted obstacles of
circular, square and diamond shapes [92]. The effects

of number and orientation on the surface were also doc-

umented. Optimization of rib-roughened surface geom-

etries was conducted numerically [93]. The objective was

to determine the best geometry while considering heat

transfer and drag. Experiments were conducted to as-

sess Reynolds analogy for rough surfaces [94]. Numeri-

cal simulations were conducted for describing roughness

effects on heat fluxes with high winds over the sea [95].

Applications include simulations of hurricane condi-

tions. Theory and experiments were applied to describ-

ing stationary vortices in Karman grooves [96]. The

feasibility of holding the vortices within the grooves

was studied. When the vortices were within the grooves,

they were stationary and in the ‘‘persistent regime of

turbulent fluxes’’. Displacing the vortices only slightly

changed the turbulent fluxes. Field observations of

area-averaged characteristics were conducted in a den-

sely built-up residential neighborhood [97]. Sensible

heat fluxes observed at 3.5 times the building height

agreed with other measurements. An analysis was pre-

sented for a moving flat sheet emerging into a quiescent

fluid [98]. Temperature gradients within the sheet were

shown to be important to the problem. Heat transfer

in a stagnation point flow towards a stretching sheet

was described [99]. The effects of elevated freestream

turbulence on heat transfer to a gas turbine vane were

measured [100]. Correlations in the literature for free-

stream turbulence augmentation were shown to not be

accurate for application to a turbine vane. The effects

of leading edge fillets on the turbine vane near the end-

wall were documented [101]. The fillets were effective in

reducing the strength of the horseshoe vortex character-

istic of this region. In a similar flow, the effects of

non-uniform inlet conditions were measured [102]. Sen-

sitivity of the secondary flow patterns to inlet conditions

was documented. Unsteady flow and heat transfer due

to passing wakes in a turbine rotor were computed

[103]. The method was accurate for subsonic turbine

flows. The effects on flow and heat transfer of having

a boundary layer fence on the endwall of a 90� turning
duct were presented [104]. The flow and heat transfer in

the stagnation region of a body in a magnetic field were

analyzed [105]. A self-similar solution for describing the

viscous dissipation and Ohmic heating effects was pre-

sented. The magnetic field tends to delay or prevent flow

reversal in the wall-normal direction. Mixing in a vessel

was modeled [106]. A unified analysis on enhancing heat

transfer with a field synergy principle was presented

[107]. It was applied to a finned tube. Performance of

pin fins cast into an aluminum coldwall was assessed

[108,109]. Experimental measurements were used to

document the heat transfer coefficients and the condi-

tions for transition to turbulence. The effects on heat

transfer of having perforations on extended surfaces

were measured with liquid crystal thermometry [110].
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An augmentation of heat transfer on the downstream

side of the perforations was documented. The effects

of radiation on the problem of flow over a wedge were

assessed [111]. The viscosity was allowed to vary. Tur-

bulent mass transport in a circular wall jet was mea-

sured [112]. While turbulence intensity increased

downstream, the turbulent mass transport declined,

indicating a weakening dispersion. The effects of turbu-

lent mixing on the dynamics of a liquid layer accelerated

by compressed air were assessed [113]. Cooling of the

hot compressed gas adjacent to the liquid was an impor-

tant part of the process. Flow and heat transfer inside

thin films supported by soft seals were studied for flows

influenced by external pressure pulsations [114]. Such

quantities as the squeezing number, the squeezing fre-

quency, the frequency of pulsations, the fixation num-

ber and the thermal squeezing parameter were

determined to be controlling parameters. Theoretical

solutions were presented for Stokes flow induced by a

sliding smooth plate over a finned plate [115]. The

change in drag and heat transfer with a change in fin

spacing was described with a fin-interaction parameter

and a characteristic length scale. The results would be

applied to microsystems.

3.3. Compressibility and high-speed flow effects

A computational fluid dynamics (CFD) method was

developed to compute the hypersonic flow fields for re-

enty vehicles [116]. It was shown that the wall surface

temperature in the downstream region is significantly

elevated by the effects of turbulence due to abalation

product gas. A ground testing facility was described

for modeling projectile flight heating upon reentry

[117]. Analytical and measured results describe transi-

tion to turbulence and heating in the turbulent flow. A

transformation from the facility results to the actual

conditions was proposed. A closed-form simulation of

convective heat transfer and heat penetration in space-

craft reenty was proposed [118]. Results were compared

against data for the Space Shuttle and the European

Atmospheric Reenty Demonstrator. Experiments and

computation on crossing-shock-wave/turbulent bound-

ary layer interactions were made with a structure having

sharp fins mounted on a flat plate in a Mach 4 flow [119].

Primary features were accurately computed but heat

transfer was overpredicted by a factor of 2–2.5.

Mixing with film cooling in supersonic duct flows was

computed [120]. Computed temperature differences did

not compare well with measured values; however, an

integral method was shown to capture the wall temper-

atures. A coordinated approach using the Navier–

Stokes solver and the integral model was proposed.

Boundary layer transition in hypervelocity boundary

layers was documented experimentally [121]. The effects

of locating a trip on the surface were quantified.
A theory for describing hypersonic blunt-nose shock

standoff was presented [122]. It includes non-equilibrium

shock-layer chemistry, gas mixing, ionization and disso-

ciation. Numerical simulations were made for non-clas-

sical shock wave effects [123]. The method includes

Bethe–Zeld�ovich–Thompson fluids, shock ‘‘splitting,’’

D�yakov-Kotorovich instability and non-linear heat

transfer in strong point explosions.

Predictions were made for laminar hypersonic vis-

cous/inviscid interactions [124]. Benchmark data from

an experiment with Mach 9.5 flow over a sharp-tipped

double cone were used for validation.

3.4. Analysis and modeling

Laminar-to-turbulent transition for low-Reynolds-

number mixed convection in a uniformly heated, vertical

tube was modeled [125]. The decay of turbulent kinetic

energy in the entry region was documented and the local

Grashof number was shown to first increase, then de-

crease to a fully developed flow value.

Transition and heat transfer predictions in a turbine

cascade with different values of free-stream turbulence

intensity were simulated with a Reynolds average Na-

vier–Stokes (RANS) model [126]. Emphasis was put

on dealing with the insensitivity of the turbulence clo-

sure model to free-stream turbulence. A review of ad-

vances in large eddy simulation (LES) was presented

[127]. This included SubGrid Scale (SGS) modeling, wall

modeling and combustion. A non-linear subgrid-scale

heat flux model was introduced for turbulent thermal

flows [128]. SGS heat flux was computed in terms of a

large-scale strain-rate tensor and the temperature gradi-

ents. A k-epsilon turbulence closure model was pro-

posed for atmospheric boundary layer computations

which include the urban canopy [129]. An improvement

was proposed to account for the anisotropy of the tur-

bulence field under density stratification.

A method for simulating unsteady heat transfer by

employing eigenmodes extracted from experimental data

was presented [130]. It was applied to a case of flow past

a heated cylinder.

A heat and mass transfer analogy based on data from

a pipe flow was applied to a bubble column [131].

A calculation technique for computing near-surface

turbulent fluxes for stably stratified flows was presented

[132]. Evidence from climate predictions showed that tra-

ditional flux calculation techniques are not sufficiently ad-

vanced. The new method accounts for the differences

between roughness lengths for momentum and for sca-

lars. The influence of modelingmethods on the prediction

of local weather was discussed [133]. A two-way coupling

of the mesoscale weather prediction model and the land

surface hydrologic model were developed. A hydrody-

namic model that describes the evolution of vortex struc-

tures in the atmosphere was developed [134]. The source
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of the vortex structures is thermal convection. The model

described the amplification of these structures. Justifica-

tion of a popular model was given for application in pure

katabatic (density driven) flow [135]. The model, for eddy

diffusivity in atmospheric boundary layer flows, was com-

pared against data. Scalar transport over snow and ice

was discussed [136]. Important are wind speed, rough-

ness, temperature, humidity and stratification.

An inverse method was presented for simultaneous

estimation of center and surface thermal behavior of a

heated cylinder in a cross-flow [137]. No prior informa-

tion on the functional form of the unknown quantities

was needed.

Heat transfer in the transition region to rarefied gas

flow was analyzed with Grad�s moment method, the
Boltzmann equation and a linearized collision term

[138]. Important to the problem was describing the

boundary condition for the moments. Gas flow over

microscale airfoils was numerically simulated using both

particle and continuum approaches [139]. The contin-

uum approach was considered to not be suitable for

the flow under study due to rarefied effects. Computa-

tion of the Chapman–Enskog functions for viscosity

and heat transfer in Poiseuille flow was discussed [140].

Direct methods for exact solutions of hydrodynamic

and heat and mass transfer equations by the generalized

and functional separation of variables were proposed

[141]. Some specific examples were considered.

3.5. Unsteady effects

Heat transfer rates to a flowing helium gas with an

exponential increase of power input to a heater were mea-

sured [142]. An application is a transient in a gas cooled

reactor. A non-similar solution and correlation was pro-

posed for heat transfer over a wedge with a sudden

change in thermal boundary conditions [143]. Heat trans-

fer during transient compression, including one-dimen-

sional conduction, was modeled and the results were

compared with data [144]. It was noted that the develop-

ment of turbulent heat transport was not properly mod-

eled. The effects of turbulent mixing due to compression

of a planar, heated gas layer by amoving liquid layer were

experimentally studied [145]. The gas compression by the

liquid layer in a deceleration stage was accompanied by

the development of a Rayleigh–Taylor instability.

An analysis was presented for a boundary layer con-

trol technique in which power to heated strips was selec-

tively supplied [146]. The change to the flow was via the

temperature effect on viscosity. The parabolized stability

equations (PSE) method was used to document flow sta-

bility. Experimental documentation was given for buoy-

ancy-opposed wall jet flow [147]. A plane jet of warm

water was injected down one wall of a vertical, rectangu-

lar passage into a slowly moving upward stream of

cooler water.
The effect of turbulence on Taylor dispersion for oscil-

latory flows was measured [148]. Shown was that

turbulence intensity increases rapidly when the Stokes-

layer-based Reynolds number exceeds 535. The ratio of

effective diffusivity to the theoretical value for laminar

flow was as large as 100 during the turbulent oscillatory

flow. A theoretical analysis was presented for laminar

pulsating flow [149]. The mechanism by which pulsation

affects the developing region was explained. The unsteady

compressible boundary layer equation over an impul-

sively started plate was solved with velocity slip and tem-

perature jump conditions [150]. Added was the conjugate

problem where the thermal field in the solid was com-

puted. Unsteady heat transfer in an impulsively started

Falkner–Skan flow with constant wall temperature was

computed [151]. Results were presented over a range of

the Falkner–Skan parameter, m, and Prandtl number.

Simultaneous velocity and surface heat transfer val-

ues were measured within an artificially-created turbu-

lent spot in a transitional flow [152]. Particle image

velocimetry and thermochromic liquid crystals were

used. Predictions of turbine blade heat transfer and

aerodynamics were presented using a new boundary

layer transition model [153]. Results were compared to

experiments.

3.6. Films and interfacial effects

Local and instantaneous distributions of heat trans-

fer rates through wavy films were measured [154]. The

Prandtl number dependency was extracted and found

to compare well with recently published experimental

data. Characteristics of water films falling down flat

plates at various inclination angles were measured

[155]. Data on mean, minimum and maximum film

thicknesses and wave velocities were presented. Charac-

teristics of falling film flow on completely wetted hori-

zontal tubes with gas absorption were measured [156].

Under certain conditions, fine random waves appear in

the film. An energy analysis was applied to the problem

of stability of an evaporating, thin, falling film in a ver-

tical tube [157]. The mechanism for breakup of the film

was described.

3.7. Effects of fluid type or fluid properties

Skin friction and heat transfer rates in power-law flu-

ids on moving surfaces were determined analytically and

numerically [158]. The relationships between viscous dif-

fusion and thermal diffusion with changes in the power

law parameter n were discussed. Momentum and ther-

mal boundary layer behavior with power-law fluids

flowing over a slender cylinder was numerically de-

scribed [159]. The interplay between shear-thinning, size

of the needle and Reynolds number was discussed. Heat

transfer from a non-Newtonian fluid to the wall of a
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stirred tank was experimentally and theoretically exam-

ined [160]. A theoretical correlation was developed.

Mixed convection of a micropolar fluid along a vertical

wavy surface with a discontinuous temperature profile

was numerically evaluated [161]. The influences of the

micropolar parameters were described. Laminar mixed

convection heat transfer from a vertical isothermal cylin-

der to water with variable physical properties was

numerically evaluated [162]. The variations of viscosity,

thermal diffusivity and density with temperature are

strong.

Thermal slip in oscillatory, rarefied flow was simu-

lated [163]. The Knudsen number was shown to be a

more important system parameter than the acoustic

Reynolds number. The temperature jump coefficient

for flow between two infinite plates was determined

using the direct simulation Monte Carlo method [164].

The effect of the Knudsen number was determined by

computing the jump with various distances between

the two plates. Numerical solutions were used to de-

scribed rarefaction, compressibility and viscous heating

in gas microfilters [165]. Skin friction and form drag

were reduced with increases in Knudsen number.

3.8. Flows with reactions

The boundary layer structure under hydrogen com-

bustion with different injection rates was numerically

simulated [166]. The presence of a heat-release front de-

lays laminar-turbulent transition from its non-combus-

tion location. The ignition delay of non-premixed

stagnation-point flow was numerically evaluated [167].

The effects of flow strain rate, Lewis numbers and Pra-

ndtl number on ignition delays were investigated with

the model. Non-local turbulent transfer models for tur-

bulent mixing in reacting and non-reacting flows were

presented [168]. Results were applied to heat and mass

transfer to solid surfaces from turbulent boundary layers.

Non-equilibrium, high-temperature, axisymmetric

boundary-layer flows were computed [169]. Wall cataly-

ticity effects were taken into account.

Experimental results and modeling steps were pre-

sented for describing the initial growth rate of a cryo-

genic shear layer under subcritical and superciritcal

conditions [170]. The geometry was a liquid nitrogen

jet which was injected into a chamber. The behavior

changed from a liquid spray-like jet to a gaseous jet as

pressure was increased.
4. Channel flows

4.1. Straight-walled ducts

Heat transfer in channel flows begins with a section

on the thermal characteristics of flow in straight-wall
passages. Friction factors and Nusselt numbers were

computed using finite elements for laminar flow in rect-

angular ducts. Steady slug flow of a Newtonian fluid

with constant properties and thermally varying condi-

tions was examined analytically [171]. The laminar-tur-

bulent transition was studied in a fully-developed air

flow in a heated horizontal tube [172]. Joule heating

and axial heat conduction were studied analytically

for a step change in wall temperature in thermally devel-

oping flow in a parallel-plate channel [173]. Turbulent

flow and heat transfer was computed using mixing

length theory in an annular-sectored duct [174]. Four

different conditions for laminar flow in a circular tube

were defined under thermally developing conditions

[175]. A new and continuous approximation is devel-

oped for the Nusselt number in hydrodynamically

developed flow between parallel plates [176]. A three-

dimensional axially parabolic model was used to

examine the developing laminar mixed convection in

horizontal and vertical tubes; heat and mass transfer

were considered [177]. Experiments were conducted of

mixed convective heat transfer in horizontal and inclined

rectangular channels [178]. Nusselt numbers were pre-

dicted for the heat transfer during in-tube cooling of tur-

bulent supercritical carbon dioxide [179]. The k-epsilon

model was used to model open channel flows influenced

by a magnetic field [180]. The mixed convective heat

transfer to air in vertical plane passages was studied

experimentally [181]. The Dufour and Soret effects were

incorporated in the extended Graetz problem in parallel

plate flow [182]. The entrance region of forced laminar

flow was investigated while including the emitting and

absorbing affects of the gas [183]. The forced flow of

gas in circular tubes with intense heating was computed

using relatively simply turbulence model; comparisons

to experiments were made [184]. Step changes in wall

heat flux were studied using direct numerical simulation

[185]. The direct numerical simulation of turbulent heat

transfer was also carried out in a square duct [186].

Forced convective heat transfer was examined experi-

mentally inside the horizontal tubes of an absorption/

compression heat pump [187]. Heat transfer enhance-

ment and local turbulence were considered in the study

of lithium annular flow under the influence of a mag-

netic field [188]. Heat transfer to supercritical carbon

dioxide was studied in miniature tubes [189]. The entro-

py generation in a solid-pipe fluid system was investi-

gated; coolanol, water and mercury were working

fluids and copper and steel were considered as pipe

material [190]. A horizontal coaxial double-tube hot

gas duct was examined [191] and the effect of viscous

dissipation on fully-developed laminar mixed convection

was studied in a vertical double-passage channel [192].

Finally, one study performed a direct numerical simula-

tion on turbulent channel flow under stable density

stratification [193].
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4.2. Microchannel heat transfer

Microscale heat transfer was examined in a variety of

channel configurations. The three-dimensional flow and

heat transfer was computed in heated microchannels

[194]. Laminar forced flow in isoflux rectangular micro-

channels was studied analytically [195]. The impact of

microspacing was considered in the slip flow regime be-

tween two unsymmetrically placed heated plates [196].

The constant-wall temperature Nusselt number was

computed in micro- and nanochannels [197]. A direct

Monte Carlo method was used to compute the flow

and heat transfer in microchannels with implicit bound-

ary conditions [198]. Monte Carlo methods were also

used to simulate the rarified gas flow and heat transfer

in microchannels in the Knudsen number range of

0.05–1.0 [199] and of low pressure fluid flow and heat

transfer in ducts at high Knudsen numbers [200]. Micro-

channel heat sinks were studied computationally using

water as the working fluid [201]. Nusselt numbers are

computed in rectangular microchannels or varying as-

pect ratio [202]. The thermal performance of microchan-

nel heat sinks was optimized numerically [203]. A

combined numerical and experimental study of single-

phase microchannel heat sinks was considered [204]. A

microheat pipe was fabricated with star grooves and

rhombus grooves [205]. A low power microchannel ther-

mal reactor was simulated numerically [206]. Fractal

branching was studied as a strategy for cooling of elec-

tronic chips using microchannel nets [207]. Experiments

were carried out to assess the gaseous flow in microchan-

nels [208]. Heat transfer coefficients were obtained for

the supercritical flow of carbon dioxide in horizontal

mini/microchannels [209]. An analytical/computational

study was discussed on the convection and conduction

in a system of slotted microchannels [210]. The ther-

mal-fluid behavior in a small capillary was studied

experimentally [211]. The theory of two-phase flow in

microchannels with emphasis on the phase change at

the meniscus was studied [212].

4.3. Irregular geometries

In this subsection we summarize papers in the litera-

ture covering a myriad of geometries, though generally

confided to channels. The multichannel narrow-gap fuel

element configuration was simulated numerically [213].

A rhombic duct was studied using a Galerkin integral

method considering constant wall temperature [214].

The fully-developed flow in an elliptic duct was studied

over a range of aspect ratios [215]. The heat transfer

characteristics created when a non-premixed flame is

introduced into a curved duct was studied experimen-

tally [216]. The endwall heat transfer was investigated

in a pin-fin wedge geometry [217]. The heat transfer in

a millimeter scale thruster nozzle was studied numeri-
cally; good agreement between model and data were

observed for non-adiabatic wall conditions [218]. The

thermally developing laminar forced convection and

heat transfer was studied in corrugated ducts confined

by sinusoidal and arc curves [219]; heat transfer rates

were also computed through a sinusoidally curved con-

verging–diverging channel [220]. A combined computa-

tional and experimental study was undertaken to

understand the thermal characteristics in convergent/

divergent square ducts [221]. A rectangular cross-section

two-pass channel was studied with an inclined divider

wall [222]. Two-pass internal coolant passages in a gas

turbine were examined experimentally [223]. Heat trans-

fer augmentation in swirling ducts experiencing rolling

and pitching was found experimentally [224]. Flow and

heat transfer in metal honeycomb was investigated;

competing goals of heat transfer and pressure drop were

addressed [225]. A multiply-folded, but continuous flow

passage was studied numerically; conjugate thermal

interaction between the fluid and bounding walls was

considered [226]. Laminar forced convection was ad-

dressed in branching ducts; effects of branch size were

examined [227].

4.4. Finned and profiled ducts

Fins, profiling, protuberances, tape-elements and the

like are commonly used to enhance heat transfer ormimic

complex geometries used in practice. In this section

profiled ducts will be summarized. The convective heat

transfer caused by perforated ribs in a turbulent bound-

ary layer was studied experimentally [228]. Reynolds

averaged equations were used to investigate the heat

transfer changes brought about by ribs in three-dimen-

sional ducts [229]. Turbulent heat transfer was studied

experimentally in longitudinal rectangular-fin arrays;

different shrouds and geometries were considered [230].

Simulations were undertaken to assess heat transfer aug-

mentation in an intermittently grooved channel [231].

Deep spherical dimples placed on a channel wall were

used to augment heat transfer; a computational study

was conducted [232]. Longitudinal strip inserts were

introduced into a circular tube for laminar flow condi-

tions and for uniform wall heat flux [233]. Twisted tape

inserts having different pitch to diameter ratios were

examined in turbulent flow [234]. The thermal boundary

conditions on the numerical predictions of heat transfer

in rib-roughened passages were considered [235]. A

numerical simulation was also conducted of turbulent

flow in a two-dimensional channel with period slit ribs

[236]. Air flowing under laminar conditions was investi-

gated experimentally in a channel having a upper V-cor-

rugated plated heated by radiation [237]. Combined

convection and radiation was studied in a tube with cir-

cumferential fins and circular disks [238]. The three-

dimensional forced laminar convection in ribbed square
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channels was studied; the study focused on repetitive

geometries [239]. An algebraic heat flux model was used

to calculate turbulent heat flux in a square duct with one

roughened wall [240]. Five different heat transfer surface

configurations were studied together with the effect of

inlet subcooling on two-phase flow instabilities [241].

The heat transfer caused by discrete rib turbulators

was investigated numerically [242]. The entry region of

corrugated tubes was studied experimentally using fluids

with temperature dependent properties [243]. The affects

of aspect ratio, temperature ratio, Reynolds number and

flow structure were considered in an experimental study

in a dimpled channel [244]. The heat transfer from plates

with fins was measured using the naphthalene sublima-

tion technique; microscopic and macroscopic features

were compared [245]. Holographic interferometry was

used to visualize the unsteady temperature fields in

grooved channels with curved vanes [246]. Spectral ele-

ment methods were used to study the enhanced heat

transfer in a flat passage downstream from a grooved

channel [247]. Experiments were carried out in a recipro-

cating duct fitted with 45� crossed ribs [248]. Liquid crys-
tal thermography was used to investigate the forced

convective heat transfer in channels with ribs [249].

Experiments were used to assess heat transfer enhance-

ment caused by rectangular blocks at different orienta-

tion angles on a surface [250]. The convective heat

transfer in ribbed channels experiencing a 180� turn
was measured by means of infrared thermography

[251]. Fully developed heat transfer was examined in a

rectangular duct with surface roughnesses [252].

4.5. Ducts with periodic and unsteady motion

Transient motion, unsteady and periodic flows are

considered in this section. Experiments were conducted

for various Reynolds numbers and pulsation frequencies

to determine the heat transfer characteristics in laminar

pipe flow [253]. The unsteady forced convection was

investigated in a duct with periodically varying heat gen-

eration [254]. An analytical solution was developed for

unsteady, conjugated heat transfer in a parallel plate

duct [255]. The affect of resonant oscillations on heat

transfer in turbulent pipe flow was considered [256].

The temperature distribution is computed analytically

to account for viscous dissipation in finite-gap Couette

devices [257]. Experiments were conducted to evaluate

the heat transfer in a decaying swirl flow [258]. A numer-

ical analysis was undertaken to evaluate the heat trans-

fer from a flat plate, one side of which contains

pressurized He II [259]. A combined numerical and

experimental study was presented for thermal systems

with helically-coiled tubes [260]. The temperature field

of a traveling wave was studied in sub-cooled liquid

nitrogen [261]. The thermo-acoustic field in a Rijke-tube

pulse combustor was verified in a two-dimensional
numerical study [262]. Thermally-developing laminar

pipe flow was studied for wall and fluid axial conduction

[263]. Heat transfer for low-Reynolds number turbulent

flow was investigated in a helically dimpled tube [264].

4.6. Multiphase and non-Newtonian flows in channels

Flows consisting of multiple phases, including nano-

fluids are considered in this section, together with

non-Newtonian flows. The flow and heat transfer char-

acteristics of a copper–water nanofluid was studied

experimentally [265]. Microencapsulated phase change

slurries were studied in circular tubes with constant heat

flux [266]. Forced convective heat transfer augmentation

was considered for the addition of metallic fibrous mate-

rials [267]. Adiabatic air–water experiments were con-

ducted to address the transition regime between churn

and annular flow [268]. Heat transfer coefficients were

determined for fluid-to-particle continuous flow of sus-

pensions in coiled tube and straight tubes with bends

[269]. A LiBr–water absorber was modeled; falling-film

and droplet mode heat transfer was addressed [270].

Six different two-phase non-boiling heat transfer corre-

lations were assessed using extensive data sets [271].

Heat transfer measurements were also used to develop

correlations for air–water flow in horizontal pipes

[272]. Experimental heat transfer coefficients were ob-

tained for a vertical tube positioned at various locations

in a circulating fluidized bed [273]. A perturbation-based

stoichastic finite element method was used to obtain the

heat transfer of a viscoelastic fluid containing elastic

spherical particles [274]. Nusselt numbers were predicted

for power-law fluids in ducts of various cross-sectional

areas; rhombic, isosceles-triangular, elliptical, and semi-

elliptical ducts were considered [275]. A Bingham fluid in

a thermal entry region was studied using a finite integral

transform technique [276]. The effects of power-law rhe-

ology, duct eccentricity and thermal boundary condi-

tions were considered in fully-developed laminar flow

[277]. Power-law laminar flow was also addressed in a

conjugate heat transfer problem in a circular tube

[278]. Fully-developed laminar flow of a Phan–Thien–

Tanner fluid was examined in pipes and channels with

constant wall temperature [279].
5. Separated flows

This section begins with papers addressing heat

transfer characteristics in flows experiencing separation,

either by rapid changes in geometry (e.g. backward-

facing step) or strong adverse pressure gradient. This

section will conclude with papers focusing on the ther-

mal-fluids of flow past bluff objects. The flow past a

backward-facing step was computed using large-eddy

simulation; the heat transfer was examined in detail in
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the region near reattachment [280]. A computational

study addressed energy separation in free shear layers;

it was shown that the pressure fluctuations play a major

role in the energy separation process [281]. Mixed con-

vection was investigated numerically in vertical ducts

with arbitrary cross sections [282]. The three-dimen-

sional forced convection downstream and adjacent to

the backward-facing step was computed [283]; mixed

convection conditions were also addressed [284]. The ef-

fect of step height was incorporated into a study of the

three-dimensional flow past the step [285–287]. Heat flux

on the floor wall downstream of a step was examined

numerically [288]. A large eddy simulation was under-

taken of the turbulent flow past a backward-facing step

including the influence of property variations [289]. The

heat transfer from a diagonal membrane heating surface

was considered; the naphthalene sublimation technique

was employed [290]. Adiabatic and heating conditions

on a laminar airfoil were investigated at moderate sub-

sonic Mach numbers [291]. Correlations of heat transfer

coefficients were obtained over blunt-edged flat plates

[292]. The heat transfer from a blunt flat plate was also

studied in a square channel; three-dimensional simula-

tions are presented [293]. A finite volume computational

scheme was used to investigate the natural convection

from a heated cylinder in an enclosure [294]. Forced

convective heat transfer was also studied over a bank

of staggered cylinders [295]. In-line and staggered con-

figurations of wall-mounted cubes was examined exper-

imentally in fully developed turbulent channel flow

[296]. One paper addressed heat transfer augmentation

caused by the application of a surfactant on the surface

of horizontal tube bundles [297]. Large eddy simulation

provided insight into the turbulent flow from a multi-

layered wall-mounted cube matrix [298]. A three-dimen-

sional numerical model was developed to assess the heat

transfer in a ceramic oxygen generator [299]. Mach 5

flow over a hemisphere was studied to examine magnetic

flow control and the corresponding heat transfer [300].

The forced convection in a channel with a built-in trian-

gular prism was computed [301]. Mixed convection was

investigated from elliptic tubes are various angles of at-

tack to a fluctuating free stream [302]. Computations

were used to determine the heat transfer from a heated

oscillating cylinder in cross flow [303]. The heat transfer

in a supersonic dusty-gas flow past a blunt body was

considered at moderate and high Reynolds numbers

[304]. The mechanism responsible for heat transfer aug-

mentation through the spanwise and longitudinal vorti-

ces is addressed in a study of the turbulent wake of a

square cylinder near a wall [305]. The laminar convective

heat transfer was measured to a blunt cone at Mach 5.75

[306]. A numerical study was conducted of channel flow

past a bluff body; the channel was differentially heated

and had a built-in triangular prism [307]. Turbulent un-

steady flow in a channel was investigated numerically;
periodically placed square bars were arranged side-by-

side to the approaching flow [308]. The enhancement

in heat transfer rate caused by acoustic streaming is

studied using ultrasonic flexural vibrations [309]. Acous-

tic streaming was also studied in the context of a cylin-

drical resonator [310]. Turbulent statistics and heat

transfer are addressed in a study using large eddy simu-

lation in a stratified shear flow [311]. The effects of a cat-

alytic surface reaction on convective heat transfer from a

heated cylinder is presented [312]. The mixed convection

from a heated horizontal cylinder is analyzed; focus is

placed on thermal instabilities [313]. The performance

of an enthalpy exchanger is placed in the context of

the effectiveness-NTU method; experiments are pre-

sented which incorporate a novel hydrophilic membrane

core [314]. The impact of free-falling waves in turbulent

films on the associated heat transfer rates is explored

[315]. The thermal law of the wall was studied for sepa-

rating and recirculating flows [316].
6. Heat transfer in porous media

The literature on heat and mass transfer in porous

media continues to expand, and several studies of a very

fundamental nature capture the breadth of recent

activity.

A general formulation of the governing equations

was developed to describe thermo-mechanical effects of

a weakly viscous flow in a porous medium, including

the Dufour, Sort and virtual mass effects [317]. The lat-

tice Boltzmann model for isothermal incompressible

flow was developed taking into account the porosity in

the equilibrium distribution and adding a force term to

the evolution equation to account for drag forces [318].

The constant heat flux boundary condition was ana-

lyzed in the absence of local thermal equilibrium and for

the effects of all pertinent hydrodynamic and structural

parameters [319,320]. Thermal non-equilibrium via the

two-equation approach was considered for a structured

medium [321]. The effects of Darcy, Prandtl, and Rey-

nolds numbers on local thermal equilibrium when con-

vection is the dominant mode of heat transport was

quantified via an order of magnitude analysis [322].

A two-equation model was developed for convective

heat transfer including the effects of inertia and the solid

boundary on the Nusselt number [323]. The method of

multi-scale asymptotic expansions was used to demon-

strate how flow in a porous medium can be equivalently

represented by an equivalent macroscopic system [324].

Inhomogeneity and anisotropy in the porous material

and their effects on forced and free convection were

investigated both numerically and analytically [325–

327].

Multiphase phase flow analysis based on molecular

populations for each phase was used to develop macro-
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scale balances [328]. Foaming flow under rapid depres-

surization and no bubble recombination was modeled

based on velocity via Darcy�s Law, pressure and dis-
persed gas fraction [329]. Dispersion of a solute in

two-phase flow was modeled via reconstruction of the

porous medium, the immiscible lattice Boltzmann

model, and random walks [330].

6.1. Property determination

The stagnant effective thermal conductivity of a bed

of spheres was determined via multi-particle simulation

by modeling two-particle interactions, and predicted re-

sults shows good agreement with experiments without

introducing new adjustable parameters [331]. More tra-

ditional microstructural models involving a known par-

ticle contact area and a significant fraction of fluid phase

heat transfer was shown to give good agreement with

experiments [332,333]. Measurements of axial conduc-

tivity in a packed bed were reported for a range of

fluid/solid conductivity ratios [334], as was an analysis

of axial thermal dispersion of open cellular porous mate-

rials [335]. The contribution of thermal radiation to the

overall thermal conductivity of a porous medium was

determined via a model comprising either spheres or cyl-

inders [336] and an experiment in which boundary heat-

ing was used to validate the calculated emissivity [337].

The apparent permeability of a porous layer was

found to be significantly lower than its intrinsic perme-

ability when the layer is sufficiently thin [338]. Wave

propagation in a linear elastic fluid-saturated porous

medium was found to be essentially adiabatic even when

convection through large pores is taken into account

[339].

As an extension of a particulate porous medium,

metal foams have begun to receive some attention.

Two comprehensive articles summarizing their proper-

ties and outlining applications have appeared [340,341].

6.2. External flow and heat transfer

Free and mixed convection on vertical surfaces under

various thermal boundary conditions and external flow

conditions remain problems of focus both experimen-

tally and analytically. Similarity, non-similarity and

integral solutions for the vertical plate produced heat

transfer coefficients as a function of wall heating condi-

tions, stratification, and volumetric heating in the por-

ous medium [342–344]. Free convection from a vertical

wavy surface was measured via the mass transfer anal-

ogy for a range of particles sizes and surface ampli-

tude-to-wavelength ratios [345]. Existence criteria for

self-similar solutions for the permeable surface with an

inverse linear temperature profile were developed, and

bounds on the minimum suction rates were established

[346]. Heat transfer in non-Newtonian fluids from two-
dimensional and axisymmetric permeable bodies of arbi-

trary shape was computed via the local non-similarity

method, and results were presented in terms of fluid

properties and the wall boundary condition [347]. Aid-

ing and opposing mixed convection from a cylinder in

a saturated medium was computed, and oscillatory flow

observed for high Reynolds number [348]. Wall mass

flux effects in mixed convection on an inclined surface

showed that the heat transfer rate increases with suction

[349].

Analysis of inertia effects on the two-dimensional sta-

bility of natural convection over horizontal and inclined

plates showed that increased Forcheimer number in-

creases the heat transfer rates with the flow more stable

to vortex modes of instability [350]. Wall conductivity

effects on free convection from a vertical plate were ana-

lyzed for the case of one-dimensional conduction, and

results compare favorably with more computationally

demanding methods [351].

An analysis of conductive to convective transport

from a flat plate to a saturated porous medium showed

that the transition from transient heat conduction to

steady forced convection is independent of the wall ther-

mal boundary condition and the presence of thermal dis-

persion [352]. Nusselt numbers in forced convection past

a parabolic cylinder embedded in a porous medium were

shown to decrease with Darcy number but increase with

inertia effects [353]. An analysis of forced convection

heat transfer from stretching boundary for a visco-elas-

tic fluid showed the connection between the viscoelastic

and inertia parameters [354,355].

Random and structured porosity models were used in

simulating forced convection through a porous block

situated in a channel, and criteria for enhancing heat

transfer were proposed [356]. Transient solutions for

heat transfer in a semitransparent porous medium in

channel flow were reported for a range of flow and ther-

mal radiation parameters [357].

Magnetic field effects on natural convection over a

permeable conical surface embedded in a heat-generat-

ing porous medium were computed for a range of mag-

netic and wall blowing parameters [358]. A similar study

considered a power-law fluid and non-Darcy effects

[359]. Hydromagnetic forced convection was analyzed

for a non-Newtonian fluid with a volumetric heat source

over an accelerating surface and a set of non-dimen-

sional parameters for transport of heat and mass were

obtained [360].

6.3. Packed beds

Forced and mixed convection in packed beds and

porous channels have been the focus of a variety of

numerical studies and modeling efforts. As in recent

years, the influences of wall effects [361], anisotropy

[362], viscous dissipation [363] and dispersion [364] on
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transport of heat and mass have been focal points but

with little comparison to experiment. Structured media,

such as that produced by staggered parallel fiber arrays

for filtering, were similarly treated numerically with bulk

and Brownian transport of suspended particles [365].

Flow and heat transfer in hydrothermal systems with

discrete cracks were show to depend on Peclet number,

permeability, and presence of cracks [366]. Mixed con-

vection in vertical channel flow was analyzed in terms

of permeability variations under the assumption of neg-

ligible Brinkman and Forcheimer effects [367]. Aiding

mixed convection in an anisotropic channel with oblique

principal axes was analyzed for the full range of possible

flows to elucidate effects of permeability variations [368].

Measurements of interstitial convective heat transfer

and frictional drag for duct flow through metal foams

showed that friction factor and volumetric heat transfer

coefficient increase with lower foam porosity at a fixed

Reynolds number [369]. Forced convection in channels

filled with metallic fibers was numerically analyzed and

found to be influenced by stagnant thermal conductivity,

Darcy number and fiber thickness [370].

Research was reported on the validity of the thermal

equilibrium assumption [321]. Laminar forced convec-

tion in structured porous media, including combined

free and porous zone flows, revealed some interesting

flow patterns and possible existence of recirculating flow

[371–373]. Measurements of heat transfer to a packed

bed comprising mono-sized glass spheres and either

water or a water–glycerin solution were interpreted in

terms measured temperature profiles [374]. For three-

dimensional flow, a combined time and space discretiza-

tion method was developed [375].

Fluidized bed flow and heat transfer were investi-

gated experimentally for both two- and three-phase

beds. Heat transfer measurements from a heated vibrat-

ing cylinder in a bed of glass particles displayed different

regimes depending on bed operating parameters [376].

Experiments on heat transfer to wall surfaces and to a

variety of immersed bodies were correlated for wide

range of Archimedes number under slugging flow

[377]. In other experiments, bubble and slug lengths were

determined by decomposition of non-invasive power

spectral density measurements [378]. The addition of

angled deflectors to the fin region of a membrane

water–wall heat exchanger surface in a circulating fluid-

ized bed was shown to produce a significant increase in

heat transfer rates [379].

Experiments on two- and three-phase fluidized beds

showed that heat transfer coefficients exhibit a maxi-

mum depending on gas and liquid velocities [380]. Heat

transfer coefficients to large spheres in a fluidized sand

bed were measured for a range of gas velocities and

interpreted with a model that does not depend on bubble

fraction [381]. Analysis of high temperature circulating

fluidized beds showed that thermal radiation can ac-
count for up to sixty percent of total heat transfer rate,

depending on particle and gas convection rates [382].

For the particulate fluid beds, analysis showed that the

heat transfer coefficient increases to a maximum and

then decreases as bed void fraction increases [383].

6.4. Porous layers and enclosures

The onset of thermal convection in layers heated

from below was analyzed to determine the influences

of a magnetic field, gravity variation, rotation, internal

heat sources, thermal radiation, and vertical through

flow [384–386]. Heat transfer characteristics at the onset

of chaos in bottom-heated cavities were obtained via a

generalized integral transform technique [387]. The

onset of convection in Darcy–Brinkman flow was deter-

mined via an asymptotic analysis of the singular pertur-

bation problem in the limit of small Darcy number [388].

A two-temperature model was also employed for the

same flow model to show that thermal non-equilibrium

can raise the critical Rayleigh number above Lapwood�s
value [389].

A two-equation model including viscous and inertial

effects was used to determine non-equilibrium effects on

overall Nusselt numbers for natural convection in a

square enclosure [390,391]. A non-equilibrium model

was shown to better represent non-Darcy natural con-

vection in high porosity metal foams heated from below

than one in which local thermal equilibrium is assumed

[392].

Numerical solutions for transient three-dimensional

Darcy natural convection in vertical cavities were ob-

tained to show the succession of stable solutions [393].

Non-Darcy effects were similarly analyzed for the verti-

cal annulus, and heat transfer rate decreased with de-

creased Darcy number [394]. For the spherical annular

sector, natural convection exhibits multi-cellular flows

for small aspect ratio [395]. Convection in a tilted frac-

ture in an otherwise impermeable domain was analyzed

to predict the effects of convection on the overall tem-

perature distribution [396].

Natural convection in a vertical cavity comprising

two layers of different permeability was shown to exhibit

a wide range of penetrative flows depending on Rayleigh

number and the permeability ratio [397]. Transient con-

vection with heat generation was numerically analyzed

for two-dimensional flow in a rectangular cavity with

air as the fluid phase [398]. A parallel study for a cylin-

drical cavity revealed the effects of aspect ratio and

anisotropy on heat transfer coefficients [399].

For cavities with an oscillating lid, permeability has a

significant effect on flow structure and a resonant fre-

quency was noted for a particular Darcy number [400].

Flow and heat transfer in a partially filled rectangular

cavity with heating from the sides shows the existence

of a quasi-parallel solution with a linear vertical temper-
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ature distribution [401]. Natural convection in a super-

posed fluid and porous layer shows that the Marangoni

effect enhances flow in the fluid layer, which results in a

reduction of buoyancy driven convection in the porous

sub-layer [402]. Mixed convective effects were numeri-

cally analyzed for two-dimensional cavities to obtain

flow structure and overall heat transfer rates [403,404].

Double diffusive convection in an anisotropic med-

ium with opposing buoyancy temperature and solute

gradients found to exhibit multiple solutions and oscil-

lating flow [405]. Oscillatory solutions were also found

for the case heat and mass fluxes were opposed

[406,407]. Doubly diffusive non-Darcian flow driven by

the upper surface exhibited the effects of varying Lewis

and Richardson numbers [408]. Double diffusive natural

convection in a stratified square cavity was found to be

markedly affected by unequal species and thermal diffu-

sion coefficients [409]. Double diffusive convection dri-

ven by cross gradients in a stably stratified enclosure

showed little difference in heat and mast transfer rates

between the two- and three-dimensional numerical solu-

tions [410]. A numerical solution was reported for dou-

ble diffusive convection with parallel transverse

temperature and concentration gradients in the presence

of heat generation or absorption [411,412].

Combined conduction, convection and thermal radi-

ation in a semi-transparent porous sphere were com-

puted via a modified discrete ordinate method [413].

6.5. Coupled heat and mass transfer

Theoretical work was reported on an unconditionally

stable numerical method for the general case where

material properties vary with moisture content [414]

and on the kinetics of moisture and heat transfer in cap-

illary media and in aerosols [415]. A conjugate gradient

inverse method was developed to determine unknown

time-dependent Biot numbers and transport based on

interior measurements of temperature and moisture

[416], and a multi-level time scheme was developed for

numerically solving the non-linear Luikov system [417].

A review of several pore-network models for comput-

ing effective transport properties and transport rates in

capillary media has identified several open problems

for further research [418]. An analytic solution based

on a quasi-steady approach results in a constant speed

for the drying front, which is corroborated by experi-

ments [419]. Luikov�s equations for capillary media were
solved with the aid of measured temperature and mois-

ture content [420] for both the direct and inverse prob-

lems [421]. A film flow model was developed based on

a network of capillary porous tubes for free water flow

prior to the onset of the hygroscopic regime [422]. A

more general numerical study of multistage drying re-

gimes determined that total drying time is mainly depen-

dent on the relative humidity of the drying medium
[423]. A novel heater was developed and characterized

for rapid vaporization of sub-cooled liquid in a capillary

medium [424].

Vacuum drying in randomly packed particles was

measured at constant heat input to qualitatively deter-

mine internal controlling factors on drying rates [425].

Microwave drying of capillary media was similarly

investigated to determine the influence of irradiation

time, particle size, and initial moisture content on inter-

nal temperature and moisture distributions [426,427].

Drying of bed particles and immersed samples in fluid-

ized beds was investigated via experiments and semi-

empirical modeling [428–430]. Temperature, moisture

content, and pore pressure were measured for the drying

of concrete to determine the rate of vapor penetration

[431], and mass diffusivity was determined based on

non-stationary moisture absorption measurements

[432,433].

Packed bed combustion of coke particles was investi-

gated experimentally and data are reported for tempera-

ture, gas concentration, particle size and sphericity, and

void fractions [434]. A coupled internal-external gas-

phase model of the combustion of a porous carbon par-

ticle in oxygen was developed to predict the formation of

CO and CO2 [435]. An experimental parameter study of

solid waste incineration on a full-scale moving bed pro-

duced rich data set that includes internal NOx profiles

[436]. Forced-flow smoldering in flat polyurethane foams

was simulated in wind tunnel tests to determine the cou-

pling between the external boundary layer and front

propagation [437]. Data on flame temperature, location

of the vapor–liquid interface, vapor region propagation,

and fuel residue distribution in non-spread diffusion

flames of liquid soaked porous beds were reported and

compared to predictions of a Stefan-type model [438].

Experiments on combustion in media show that there

are critical conditions for the initiation and extinction

of super-adiabatic combustion in steady flow [439]. A

numerical model of planar premixed methane flames in

ceramic media suggest that heat transfer between phases

remains decoupled from the initial flame chemistry [440].

The role of adsorption and phase change in the char-

acterization of low moisture materials was modeled with

the phase change rate related to local non-equilibrium

through a delay coefficient [441]. An improved variable

switching scheme for multi-phase transport in soils with

a non-aqueous liquid phase developed [442]. Related

studies considered similar processes for large scale geo-

logic systems, including fracture flow and imbibition ef-

fects [443–446]. Mineralization and ore body formation

in hydrothermal/sedimentary basins was successfully

modeled in terms of the pore-fluid velocity and the equi-

librium concentration [447,448].

Optimal sublimation rates in a porous half-space

were determined in terms of the vapor mass concentra-

tion at the sublimation front [449]. Direct contact
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melting of ice particles was found to exhibit distinct re-

gimes for very small and large particle diameter [450].

Convective melting of a granular bed under micrograv-

ity was experimentally investigated and successfully

decoupled buoyancy effects due to density differences

[451]. Preferential flow paths formed during the dissolu-

tion of a porous medium were found to depend on the

properties of the medium at the pore scale [452]. Heat

transfer with phase change in an inclined packed enclo-

sure was numerically determined, and a Nusselt-versus-

Rayleigh–Darcy number was developed [453].

Moisture transport in paperboard was modeled in

terms of a linear driving force transport at the interface

of a system of continuous hygroscopic fibers and voids

and found dependent on relative values of diffusion

and adsorption parameters [454]. Convective heat and

moisture transport coefficients in cotton material were

measured and modeled in terms of the speed of air pene-

trating the material [455,456], and a companion study

considered periodic air flow, such as occurs in walking

[457]. Fabric thickness and porosity were shown to sig-

nificantly affect moisture transfer via a model that incor-

porates liquid diffusion in the mass and energy

conservation equations [458]. Related studies incorpo-

rate evaporation and mobile condensates in fibrous insu-

lation and building systems [459–461]. Moisture content

and effects of non-uniformity in percolation were inves-

tigated with respect to drying of potatoes [462].
7. Experimental methods

7.1. Introduction

The need for measurements in heat transfer and re-

lated flow studies remains strong. This is particularly true

in situations which cannot be completely defined in fairly

straightforward numerical modeling. This includes,

among other things, two phase flow, and many turbulent

flow situations. Modeling of the turbulent heat transport

process is still not refined to the point of making accurate

predictions in particular in flows that have not been well

studied and well measured. Thus, if nothing else, the

measurements must be used to refine turbulence models

and to some extent numerical methods. In addition flow

and thermal measurement are required in many indus-

trial and, for that matter, consumer-used systems. Accu-

rate and reliable data are required, which gives rise to the

need for good methods of measuring temperature, heat

transfer and velocity, and also other flow parameters,

as well as property measurements of real materials.

7.2. Heat transfer

Visualization techniques have been used in a number

of heat transfer measurements. This can mean an appli-
cation of a thermochromic liquid crystal (TLC) and a

transient experiment in which the change in local tem-

perature on a surface with time, deduced from the local

color changes of the TLC, are used to calculate the local

heat flux. Such a system has been applied in a super-

sonic blowdown tunnel for Mach-three flow over a sur-

face [463]. An uncertainty analysis [464] shows the

potential error, when obtaining local heat transfer coef-

ficients, from discrete random uncertainties in TLC

measured temperatures. Luminescent coatings are used

[465] to measure surface heat transfer rates in a short-

duration hypersonic flow at Mach numbers between

9.5 and 11.1. A new simplified model [466] can be used

for data reduction of transient heat transfer measure-

ments in internal channel heating and cooling investiga-

tions. A two dimensional transient heat conduction

analysis [467] improves the reliability of heat transfer

measurements for erodable ribbon-element heat flux

gauges used in internal combustion engines. A design

analysis [468] of a heat flux sensor based on the trans-

verse Seebeck effect demonstrates how measurements

of instantaneous values of heat flux can be obtained

in a free convection boundary layer. The operating prin-

ciples and calibration procedure for a new-design differ-

ential calorimeter used for heat transfer measurement

have been described [469].

7.3. Temperature measurement

A telocentric objective lens used with a digital camera

eliminates the angular dependence in the color determi-

nation which is critical in use of thermochromic liquid

crystals for precision measurements [470]. An interfacial

temperature sensor of 1 lm thickness, developed using

microfabrication techniques, has measured temperatures

in a simulated rapid solidification process [471]. Fluores-

cence properties of a special thermographic phosphor

permit high spatial- and temporal-resolution tempera-

ture measurement [472]. Black-body optical-fiber ther-

mometers with a metallic coated sensing tip are used

for measurements in high temperature environments

[473]. Numerical experiments [474] evaluate the use of

a passive acoustic thermal tomograph for providing

spatial resolution of temperature on a surface. An

infrared-charge-coupled device (ccd) camera provides

the temperature distribution at the cutting edge of a

machine tool [475].

7.4. Velocity measurement

A closely-spaced array of hot-film sensors is used

[476] to determine the skin friction distribution on a cir-

cular cylinder. A thermal tuft of cool air near a specially

coated TLC surface can indicate very low velocities in

weakly separated flows [477]. A refined analysis [478] im-

proves a speckled tomography technique to reconstruct
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both large-scale structure and microstructure in turbu-

lent flows. Flow patterns can be deduced using process

tomography [479]. A cross correlation technique [480]

improves the time resolution of ultrasonic velocity mea-

surements in turbulent flows. A numerical analysis for

the two dimensional heat transfer from a circular cylin-

der in Couette flow [481] indicates the correction needed

for hot wire measurements near a wall.

7.5. Miscellaneous

Pattern recognition analysis applied to a rake of

resistive probes [482] indicates the presence of bubble

clusters in turbulent bubbly flow. An X-ray tube and

scintillation counters can measure the void fraction in

flows of an air–water mixture [483]. Two phase gas

liquid flows have been studied [484] with an extraction

device in which the air and liquid flows are measured

separately. A wire mesh sensor used with a newly devel-

oped algorithm for special field reconstruction [485]

provides local instantaneous true gas velocities in a bub-

ble flow. Surface reflectance measurements in the far

infrared are used to determine condensate film thickness

on a surface [486]. A special pressure-sensitive paint is

used [487] in a cryogenic steady flow wind tunnel for

pressure measurements. Silicon-based thermal conduc-

tivity detectors have been used in a number of geome-

tries [488]. A three dimensional finite model [489]

predicts the thermal response of calorimeters used to

measure pulsed laser energies. Calibration methods have

been applied [490] to temperature-modulated differential

scanning calorimeters.
8. Natural convection-internal flows

8.1. Highlights

Natural convection in a square or rectangular cavity

continues to receive considerable interest. Most investi-

gations are numerical in nature and address issues such

as localized heating or cooling, partial obstructions, var-

iable fluid properties and internal heat generation. A

two-phase fluid containing shape memory alloy/rubber

membrane particles has been proposed that will increase

in bulk density as the temperature increases creating a

negatively buoyant fluid.

8.2. Fundamental studies

Analysis of symmetries and self-similar forms of the

Navier–Stokes and Fourier–Kirchhoff equations was

used to reduce the order of equations and obtain ana-

lytical solutions to a number of natural convection

problems [491]. A review of similitude criteria applied

to natural convection was given [492]. Measurements
were made in large aspect ratio horizontal layers for

Ra from 107 to 109 that support the logarithmic varia-

tion for velocity and temperature profiles in the layer

[493]. The validity of the incompressible flow model

coupled with the Boussinesq approximation that is

widely used in natural convection studies was discussed

[494]. Stability and chaotic characteristics of a vertical

wall plume were studied that showed the flow can be

classified into four regions [495] (Ishida). An interesting

inverse buoyant fluid was described in which particles

composed of shape memory alloy and rubber bellows

make the bulk fluid negatively buoyant when heated

[496].

8.3. Internal heat generation

Stability and bifurcation were studied numerically for

steady internal heating of a horizontal layer cooled from

above and below [497] and for a vertical channel [498].

Three-dimensional numerical solutions were obtained

for liquid metal contained in a cubic enclosure heated

in a uniform magnetic field [499]. Oscillating sidewall

temperature on a cavity containing an internally heated

fluid was able to set up resonance at specific oscillation

frequencies [500]. Studies of internal heating were also

applied to geoplanetary flows [501–505].

8.4. Thermocapillary flows

A similarity solution was obtained for developing

Marangoni flow over a flat surface [506]. Approximate

similarity of temperature and velocity profiles was found

for large Prandtl number in a floating zone technique

used for crystal production [507]. Thermocapillary flows

were studied in various containers including rectangular

cavities [508,509] and a liquid bridge [510]. Effects of

Marangoni type flows were studied for bubbles, drops

or particles in suspension [511] and for single glycerine

drops [512]. Heat transfer was found to be enhanced

by thermocapillary flows in an ammonia–water absorp-

tion process by adding n-octanol [513].

8.5. Enclosures

Scaling of heat transfer in large Prandtl number flu-

ids [514] and experimental data obtained using high

pressure gases [515] were given for large Rayleigh num-

ber flows in horizontal layers. Effects of time dependent

gravity on the thermal stability of a fluid layer was given

[516]. Rayleigh-Benard type problems were investigated

for square [517] and cubical [518] cavities, truncated cyl-

inders [519], a deep cavity [520] and a layer with an

inclined upper surface [521]. The horizontal layer geom-

etry was also used to study combined heat and mass

transfer [522] and a layer containing two immiscible flu-

ids [523].
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Numerical solutions were obtained for natural con-

vection in square cavities to illustrate numerical meth-

ods [524,525] and to study the effects of magnetic

fields, temperature dependent fluids and pseudoplastic

fluids [526–528]. The flow of a magnetic fluid in a

square Hele–Shaw cell was observed using a shadow-

graph method [529]. Numerical solutions were obtained

for natural convection in rectangular cavities to investi-

gate combined heat and mass transfer [530,531],

magnetic damping of the flow of a low-conducting

aqueous solution [532] and temperature variation of

the uninsulated upper wall [533]. Variations of rectan-

gular enclosure geometry include an inclined enclosure

heated from below [534], an inclined enclosure with a

wavy lower wall [535] and a vertical enclosure with

two opposing wavy walls [536]. Solutions for cubical

cavities were presented that incorporate various effects

of a magnetic field [534,537,538]. A comparison of ten

numerical solutions to benchmark experimental data

on natural convection in a tilted cubical enclosure con-

taining air was presented [539]. Localized thermal

sources and sinks in rectangular cavities have been

investigated numerically [524,540–542]. Several studies

of partial internal partitions in rectangular enclosures

have been made [543–548]. Vertical [549] and inclined

[550] open cavities have been studied numerically. Res-

onance inside a rectangular cavity heated from the side

with an oscillating moving bottom wall was studied

experimentally using air [551]. Additional geometries

considered include a semi-cylindrical cavity [552], an in-

clined arc-shaped enclosure [553], a dome [554] and a

spent fuel cask [555].

8.6. Vertical cylinders, ducts and annuli

Heat transfer in a vertical cylinder was studied for the

case of conducting walls [556], the effects of a strong

magnetic field on air [557,558] and in an annulus heated

from below [559]. Natural convection was studied for a

vertical duct with triangular, circular, square, and rect-

angular cross sections [560]. Measurements of velocity

were made in turbulent flow contained within symmetri-

cally and unsymmetrically heated vertical channels [561].

The effect of partial obstructions in a vertical channel

was modeled for perfectly conducting or adiabatic

obstructions located near the entrance, exit or in the cen-

ter of the channel [562].

8.7. Spherical and horizontal cylindrical annuli

The stability of flow in a spherical annulus was inves-

tigated using a Galerkin–Chebychev spectral method for

axisymmetric disturbances for a wide range in Prandtl

number and aspect ratio [563]. Real-time holographic

interferometry was used to study convection in a spher-

ical annulus when both thermal and electric field driving
forces are present [564]. Numerical methods were used

to solve the natural convection flow in horizontal eccen-

tric cylindrical annuli [565–567]. Three-dimensional flow

was studied in a horizontal concentric annulus with

open ends [568]. Numerical methods were used to study

the effects of aspect ratio and eccentricity on the heat

transfer from an isothermal horizontal cylinder to its

square enclosure [569].

8.8. Mixed convection

Experimental [570] and numerical [571] approaches

have been used to investigate the flow patterns in hori-

zontal ducts heated from below. Flow reversal of cold

fluid flowing downward in a vertical rectangular duct

has been studied when the walls are given a constant

heat flux boundary condition [572]. Experiments were

performed using air and water to study the influence

of variable properties on natural convection in a vertical

annulus [573,574]. Transient spin up of the contents of a

vertical cylindrical container with the bottom heated

showed differential spin up rates depending on the tem-

perature of the fluid [575]. Various air return locations

were investigated to determine their performance on

the displacement ventilation airflow pattern in a room

[576]. Other studies of mixed convection include falling

films [577], open enclosures [578], a square cavity with

an internal protrusion [579] and an inclined ice melting

layer [580].

8.9. Fires

Numerical solutions were presented for several rele-

vant problems including ventilation and fire spread in

highway tunnels [581]. A three-dimensional forest fire

model was described that included drying, pyrolysis and

combustion of the emitted gases [582]. Additional model-

ing has been conducted for the incineration of solid waste

on a moving bed [583] and a one-dimensional model for

pyrolysis of charring materials [584]. Experiments were

performed to study the effect of a red phosphorous flame

retardant [585].

8.10. Miscellaneous

Double diffusive convection [586,587] and thermal

convection in near-critical fluids [588] were studied

under microgravity conditions. Double diffusive flow

structures were visualized by injecting glycerine into

the bottom of a water layer [589]. Numerical methods

for simulating aerosol growth and transport in natural

convection fields were summarized [590]. Air flows in

heated attic spaces were simulated numerically including

the installation of ceiling fans to mix the stratified flow

[591]. A mathematical model was developed for the

reduction of magnesium in a vertical retort [592].
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9. Natural convection-external flows

9.1. Vertical plate

The isolated semi-infinite vertical flat plate continues

to be addressed with variations in thermal boundary

conditions, properties of the surrounding fluid and sur-

face mass transfer. The full Navier–Stokes equations

were solved for a plate with constant, uniform heat flux

[593] and experiments were performed in air using tran-

sient Joule heating of a thin graphite foil [594]. A uni-

form surface heat flux was also used in a study of a

plate immersed into a chemically reacting system [595]

and a plate subject to periodic heat flux in the form of

a step function [596]. Combined heat and mass transfer

rates were measured during frost formation [597] and

predicted in a viscous dissipative fluid [598]. Heat trans-

fer from an isothermal plate to glycerol with variable

thermophysical properties was predicted numerically

[599] as was heat transfer to water including the effects

of surface blowing or suction [600]. Direct numerical

simulation was used to study unsteady natural convec-

tion from an impulsively heated plate immersed in a lin-

early stratified fluid [601]. Another study added the

effects of a permeable surface and magnetic field heat

absorption effects [602].

9.2. Horizontal and inclined plates

Closed form solutions were presented for heat trans-

fer below an isothermal horizontal flat strip [603]. A

numerical study was performed for natural convection

above a uniformly heated flat plate in a micropolar fluid

[604]. Heat transfer from a horizontal flat plate was

found to increase by a factor of three when a corona

wind was applied using a single steel wire bounded by

two copper wires [605]. A heated inclined plate im-

mersed in a water tank was used to study the effect of

spanwise arrays of heating elements [606]. Time invari-

ant spanwise-periodic heating was found to generate

counter rotating vortex pairs that resulted in increased

heat transfer and fluid flow rate. A numerical study of

a uniformly heated plate showed that the heat transfer

was complex when the angle of inclination was less than

10� but that the results for angles larger than 10 degrees
could be correlated very well [607]. An impirical heat

transfer correlation was also developed for inclined iso-

thermal circular disks [608].

9.3. Channels

Turbulent free convection in a vertical open channel

was investigated [609] to determine the effects of specific

volume variation in weakly compressible flows. The ef-

fects of a constant heat source at the centerline [610]

and a central isothermal or insulated plate [611] in a ver-
tical open channel were studied numerically. Experi-

ments were performed on an inclined channel with

three heated strips mounted on the upper wall [612].

For inclinations less than 85�, the channel spacing was
not important whereas it was for larger angles.

9.4. Cylinders and cones

Natural convection about a horizontal cylinder in air

was studied using holographic interferometry [613]. A

theoretical study was performed to determine whether

or not homogeneous nucleation of salt is possible in

the natural convection boundary layer of a cylinder im-

mersed into a salt solution [614]. It was shown that the

Lewis number is the critical property in determining

whether homogeneous nucleation is possible. An elec-

trochemical mass transfer technique was used to mea-

sure the mass transfer coefficients from upward [615]

and downward facing [616] truncated cones. Governing

non-similarity boundary layer equations were solved to

determine natural convection from a vertical circular

cone with either uniform surface temperature or con-

stant surface heat flux [617].

9.5. Plumes

A numerical study was performed to investigate the

effect of uniform or parabolic nozzle temperature and

velocity exit conditions on vertical buoyant jet flow

[618]. A correlation to predict the virtual origin of a

thermal plume was presented. Two turbulence models

were compared using a buoyant diffusion flame [619].

A modified version of Hanjalic�s model was found to
give better agreement with experimental data than the

low-Reynolds number k-epsilon model of Ince and

Launder. A streamline-upwind/Petrov–Galerkin finite

element method was developed for buoyancy-driven

incompressible flows and applied to atmospheric

buoyant plumes [620]. A heat generating, salt contain-

ing plume in a sloping fresh water aquifer was studied

to simulate deep-well disposal of radioactive waste

[621].

9.6. Mixed convection

Similarity and local similarity solutions were ob-

tained for the boundary layer equations representing a

moving permeable vertical surface with aiding or oppos-

ing flow [622]. Numerical solutions were presented for

stagnation flow on a vertical heated plate after both

the free stream velocity and heat flux are suddenly in-

creased [623]. Steady heat transfer from a vertical wavy

plate in a non-Newtonian fluid [624] and thermal insta-

bility over horizontal and inclined surfaces [625] were

studied theoretically. A study of heat sink fin arrays

[626] showed that the pin fin configuration generally



840 R.J. Goldstein et al. / International Journal of Heat and Mass Transfer 48 (2005) 819–927
outperforms other geometries. Two experimental studies

were performed on water and ethylene glycol in horizon-

tal dimpled tubes [627] and air in a horizontal channel

with the bottom and side walls heated and the top

cooled [628]. Mixed convection in horizontal [629,630]

and vertical [631] channels were solved numerically

when discrete heating elements were present. A com-

bined experimental and numerical study was performed

to investigate the effect of heat on the stability of a hor-

izontal vortex street [632]. Natural and mixed convec-

tion were studied for mass transfer from droplets [633]

and from a sphere that represents a hot film anemometer

probe [634]. Experiments were performed to study aid-

ing and opposing mixed convection flow from a sphere

for low values of Grashof and Reynolds numbers

[635]. Heat transfer was found to be significantly en-

hanced when a sphere oscillates vertically in forced con-

vection but the enhancement decays when the Grashof

number becomes significant [636].
10. Convection from rotating surfaces

10.1. Rotating discs

Flow and heat transfer to rotating discs was numer-

ically solved with a focus on the transition between

two-dimensional and axisymmetric flows [637]. Flow

characteristics when natural convection is the dominat-

ing heat transfer mode were measured and reveal the

behavior of circumferential vortices and fluctuating

velocity and temperature [638]. Analysis of droplet for-

mation via the breakup of a liquid surface films was also

reported [639].

Impingement laminar heat transfer was calculated via

the integral method, and good agreement with existing

experiments was obtained [640]. For laminar planer flow

over a rotating disc, Nusselt number correlations have

been calculated and applied to disc brake cooling

[641]. Wind tunnel experiments were employed to deter-

mine effects of wall rotation for turbulent and transi-

tional flows with wall heating [642,643]. Transient heat

transfer for hydromagnetic spin up and spin down of a

vertical disc was calculated under the influence of a

strong buoyancy force due to wall heating [644].

10.2. Rotating channels

Turbulence modeling in rotating channel flows

encompassed direct numerical simulation, k-epsilon,

large-eddy simulation, and explicit algebraic Reynolds

stress methods. Flow structures, wall shear stress, effects

of buoyancy and the overall heat balance were variously

computed and in some cases, comparisons with mea-

surements revealed good agreement [645–649]. The case

of generated swirl in circular ducts was also treated via a
turbulence modeling [650]. Calculations of fully devel-

oped turbulent flows in orthogonally rotating and sta-

tionary curved ducts were compared and a set of

dimensionless parameters revealed a degree of similarity

between them [651]. Turbulence modulation by dis-

persed solid particles was also reported via direction

numerical simulation [652]. The limit of very flat ducts

represented by rotating parallel planes was investigated

numerically for a range of flow regimes, including very

low Knudsen number [653].

Measurements via the PIV method obtained average

turbulent kinetic energy, secondary flow structure, and

mean velocity distribution in a two-pass square channel

with ribbed walls [654]. Measurements in a flat rectangu-

lar duct with constant wall heat flux provided insight

into the effects of Coriolis forces in the absence of buoy-

ancy [655].

Developing laminar flow for an incompressible, con-

stant viscosity fluid in a smooth duct with a 180� bend
was calculated, and the degree to which rotation affects

the secondary flows was compared to the no-rotation

case [656]. Flow and heat transfer in ribbed channels

were computed to determine the degree of heat transfer

enhancement, and results indicate an optimal rib angle

depending on flow conditions, channel aspect ration,

and rotation parameters [657–660]. The special case of

flat ducts with pin-fins was investigated experimentally

with constant wall heat flux, and a variation of heat

transfer coefficient with transverse location was discov-

ered [661].

10.3. Enclosures

Analysis of laminar compressible and incompressible

flow and heat transfer in the rotating annulus deter-

mined the key parameters of the flow structure when a

transition to unsteadiness occurs [662,663]. Computa-

tion of axisymmetric turbulent flows in rotor–stator type

systems showed existence of traveling waves in the

boundary layers and inertial waves in the core region

[664]. Heat transfer with mass transfer in a cylinder with

axial rotation established the effect of rotation on vol-

ume averaged temperature [665].

Melting and freezing between two rotating concentric

cylinders were analyzed to obtain overall design param-

eters on heat transfer and cycle time [666,667]. The

extension of this problem to the rotating layer of a eutec-

tic material revealed the effects of Coriolis forces for

both stationery and oscillatory convection [668]. Cen-

trifugal phase separation was codified in terms of dimen-

sionless groups and an expression for evaluation

separation performance as developed [669].

Rotating drum dryers and reactors were analyzed for

flow and heat transfer in connection with solid state fer-

mentation with interesting results obtained for axial

mixing and axial temperature gradients [670,671]. Dou-
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ble drum drying was similarly analyzed with emphasis

on effects of drum temperatures, gap size, and thermal

inertia on overall efficiency [672]. A new approach was

developed to handle interparticle gas flow effects in ro-

tary kilns, and results were successfully compared to

experiments [673]. Granular flows comprising particles

of different diameters were also analyzed for two-dimen-

sional flow, and experiments generally verified the pre-

dicted overall flow structure [674]. Bed transition from

slumping to rolling and bed turnover time were pre-

dicted for mono-size granules, and a new Froude num-

ber was proposed to correlate experiments for different

materials [675]. Three-dimensional modeling of flow

and heat transfer in a rotary lime kiln was compare to

pilot plant experiments [676].

Heat, momentum, and mass transfer of a non-New-

tonian fluid in single and twin-screw extruders were

found to be dependent on conduction in the screw barrel

[677].

10.4. Cylinders, spheres, and bodies of revolution

Crystal growth techniques remain an active area for

fundamental investigation via experiments and theory.

Experiments were reported on the Bridgman–Stockbar-

ger method to determine the effect of melt stirring on

crystal purity [678,679]. Numerical analyses of crystal

growth rate in the Czochralski method predicted the

interplay between magnetic field strength and rotation

rate [680] and between internal radiative heat transfer

and rotation rate [681]. Effects of a rotating magnetic

field in a cylindrical silicon melt include a primary azi-

muthal flow and a secondary meridonal flow [682].

Numerical simulation of the effect of ampoule rotation

on temperature and feed rates in the rotational Bridg-

man method showed that stirring effect of ampoule rota-

tion was increased with an increase of rotation rate

[683].

Modes of convection in a rotating cylinder under ver-

tical, horizontal and rotating magnetic fields exhibit sev-

eral flow regimes dominated by a subset of the field

effects and rotational speed [684]. Analytical study of

the stability of rotating magnetic fluid columns revealed

modes and conditions for stability both with an without

heat transfer [685]. Coherent flow structures generated

by a rotating magnetic rod in agitated small tanks were

obtained with an electrochemical probe using a power

spectral density analysis of current fluctuations and flow

visualization via laser tomography [686].

Heat transfer reduction at the separation point of a

translating and spinning sphere was analyzed, and a sig-

nificant reduction below stagnation point values was

shown to be possible [687]. Temperature dependent vis-

cosity effects on convection up to the transition point on

a spinning sphere produced a marked effect on heat

transfer coefficients [688].
11. Combined heat and mass transfer

11.1. Ablation

A number of studies consider the heat transfer, phase

change, thermal effects of particles and thermoelastic

wave of ablating materials. Heat transfer and phase

change during picosecond laser ablation of nickel were

investigated using both experimental and computational

studies. Researchers determined the threshold fluence

for mass removal (ablation) experimentally. Numerical

calculations of transient temperature distribution and

kinetics of solid–liquid and liquid–vapor phase change

interfaces were performed [689,690]. A hybrid simula-

tion was done to investigate metal ablation by still using

picosecond laser pulses [691]. Researchers also devel-

oped a photochemical and photothermal model for

pulsed-laser ablation [692]. In order to investigate the

time evolution of nickel ablation induced by high-energy

picosecond laser pulses, in situ photography was studied

and the fundamental and second harmonic wavelengths

were used for the pump and probe beams, respectively

[693]. Researchers also formulated an analytical solution

for thermoelastic waves in a metal induced by an ultra-

fast laser pulse in the form of a Fourier series [694]. A

coupled aeroheating/ablation analysis for missile config-

urations has been done [695]. Usually shock-waves are

generated during pulsed-laser ablation. The dynamic

properties of shock-waves formed during laser ablation

at sub-atmospheric pressures are studied [696]. Thermal

effects of particles on hypersonic ablation were investi-

gated [697]. Multiscale computational modeling of laser

ablation was performed using two computational

schemes, combined molecular dynamic-finite element

method and the direct simulation ofMonte Carlomethod

[698]. In practical applications, the ablation, pyrolysis gas

formation and removal, and heat conduction phenomena

at the stagnation point of the heat-shield for the four

Pioneer–Venus vehicles are calculated to investigate the

response of heat-shield material [699].

11.2. Transpiration

Two studies involving transpiration were performed.

In order to predict the aero-thermal behavior of transpi-

ration cooled plates, a multi-scale approach based on

the homogenization method of periodic material struc-

tures is developed [700,701].

11.3. Film cooling

Film cooling is an effective method of heat transfer

and very useful in protecting surfaces from effects of

thermal stress. Several studies consider the effects of

bulk flow pulsations on film cooling with compound

angle holes [702,703] and the effect of embedded vortices
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on film cooling performance on a flat plate [704]. The

film cooling performance was also studied. Researchers

investigated film cooling effectiveness and heat transfer

coefficient distributions around different diffusion

shaped holes [705], flow visualization and film cooling

effectiveness around shaped holes with compound angle

orientations [706], transonic film cooling effectiveness

from shaped holes on a simulated turbine airfoil [707],

the film cooling performance on the pressure side of a

turbine vane subjected to high mainstream turbulence

levels, with and without showerhead blowing [708].

The heat flux reduction from film cooling, correlation

of heat transfer coefficients and correlation of film cool-

ing effectiveness from thermographic measurements at

engine-like conditions were also investigated [709,710].

Experimental measurements of the performance of new

film cooling hole geometry, the converging slot-hole or

console were made [711,712]. An experimental investiga-

tion was conducted to improve a slot film cooling system

used for the cooling of a gas turbine combustor liner

[713]. An experiment was conducted on the flow and

heat transfer characteristics of film coolant injected from

a row of five holes with compound angle orientations

[714]. Several numerical simulations have been done. A

numerical simulation of blown film cooling was per-

formed and suggested that the heat transfer rates were

affected by many parameters [715]. Researchers also pre-

sented recent trends in modeling jets in crossflow with

relevance to film cooling of turbine blades [716].

11.4. Jet impingement heat transfer—submerged jets

The heat transfer mechanism of multiple impinging

jets with gas–solid suspensions has been investigated

both experimentally and numerically, [717]. An experi-

mental study of flow downstream of round, pitched

and skewed wall jets (vortex generating jets) is presented

to illustrate the effects of changing the geometric inlet

conditions of the jet holes, [718]. Heat transfer augmen-

tation of impinging jet-array with very small separation

distances is attempted by using the grooved orifice plate

through which the nozzles with different diameters are

fitted [719]. The effect of jet inclination of the local heat

transfer under an obliquely impinging round air jet

striking on isothermal circular cylinder is experimentally

investigated. The circumferential heat transfer distribu-

tion as well as axial Nusselt number is measured,

[720]. A jet impingement technology to enhance heat

transfer at the grinding zone, is presented. The jet

impingement technology uses a new apparatus devel-

oped to spray grinding fluid onto the workpiece surface

at the grinding zone from the radial holes of an electro-

plated CBN wheel [721]. It is shown that a self-oscillat-

ing impinging jet configuration is extremely beneficial in

enhancing the heat removal performance of a conven-

tional (stationary) impinging jet [722]. Stability analysis
of the mechanism of jet attachment to walls is per-

formed. The analysis makes it possible to formulate

the separation distance of the jet depending on its prop-

erties at the blowing slot, [723]. A confined laminar

swirling jet is studied and flow and temperature fields

are simulated numerically using a control volume ap-

proach. Entropy analysis is carried out to determine

the total entropy generation due to heat transfer and

fluid friction [724]. The entropy generation is a plane

turbulent jet is revised. This flow is characterized by

quasi-periodic lateral oscillations, documented in the lit-

erature, due to the instability of the flow [725]. Measure-

ments of mean and fluctuating velocity and temperature

and their self- and cross-products to the third order are

presented for a heated axisymmetric air jet [726]. The

heat transfer characteristics of the flow downstream of

a heated jet source of momentum issuing into an aligned

uniform stream, is established. Perturbation solutions

about limiting similarity states at the jet and down-

stream are obtained, [727]. The flow and heat transfer

characteristics of impinging laminar multiple square jets

have been investigated numerically through the solution

of the three-dimensional Navier–Stokes and energy

equations in steady-state [728]. A fully elliptic Navier–

Stokes equation solver in conjunction with a Reynolds

stress model is validated for mildly and strongly

under-expanded jets [729]. A well-resolved numerical

simulation of a Mach 0.5 jet exiting from a rectangular

shaped nozzle with an aspect ratio of 5 into a quiescent

ambient was performed at a Reynolds number of 2000

based on the narrow side of the nozzle [730]. The simi-

larity equation describing the thermal boundary layers

of laminar narrow axisymmetric jets is derived based

on boundary layer assumptions. The equations are

solved exactly [731]. Adaptive finite element computa-

tions of laminar jet impingement heat transfer are pre-

sented. Variable fluid properties and compressibility

effects are considered. A unified formulation of the equa-

tions is used to treat the simultaneous presence of three

flow regimes: incompressible, compressible, and anelas-

tic [732]. Turbulent flow field and heat transfer in an

array of slot jets impinging oil a moving surface have

been numerically investigated using Large Eddy Simula-

tions [733]. An experimental investigation has been

conducted on the impingement of under-expanded, axi-

symmetric, and supersonic jets on flat plate. The surface

pressure and the adiabatic wall temperature distributions

on the flat plate have been measured in detail at small

nozzle-to-plate distances [734]. An experimental study is

carried out on gas mixing processes and heat transfer

augmentation by a forced jet in a large cylindrical enclo-

sure with an isothermal bottom heating/cooling surface,

[735]. A numerical and experimental investigation on

cooling of a solid surface was performed by studying

the behavior of an impinging jet onto a fixed flat target

[736]. A microjet impingement cooling device for high
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power electronics was constructed from silicon wafers

using microelectromechanical systems fabrication tech-

nique [737]. Impinging jet combusting flows on granite

plates are studied. A mathematical model for calculating

heat release in turbulent impinging premixed flames is

developed. The combustion including radiative heat

transfer and local extinction effects, and flow characteris-

tics are modeled using a finite volume computational ap-

proach and two different eddy viscosity turbulence

models [738]. A three-dimensional mathematical model

has been developed for the simulation of industrial-scale

flaming processes. Results are presented from the appli-

cation of this model in a natural gas jet flame impinging

vertically on the surface of granite material. The aim is

to obtain a deeper insight into the flame characteristics,

[739]. Carrier gas flow in a rapid thermal chemical vapor

deposition reactor was studied using flow visualization

and laser induced Rayleigh light scattering. The flow field

consists of a downward axisymmetric jet of carrier gas

impinging on a wafer which undergoes transient heating,

[740]. The heat transfer process is investigated utilizing a

three-dimensional finite volume numerical method and

renormalization group theory based k-epsilon turbulence

model. The issuing incompressible jet is impinging upon

the inside of an inclined surface creating a thermal

boundary layer and a fully three-dimensional vortex

structure [741]. Rectangular jet impingement heat trans-

fer on vehicle windshield is examined [742]. Two-dimen-

sional axisymmetric flow and energy equations are

solved numerically using a control volume approach

for the case of a gas assisted laser heating of steel sur-

faces. Various turbulence models are tested [743]. A

mathematical model for the calculation of the hydrody-

namic and thermal parameters of dispersed impurity in a

round pipe and in a jet is given in Eulerian variables.

The model is based on a unified set of equations describ-

ing the turbulent characteristics of particles in non-iso-

thermal flow and of boundary conditions representing

the interaction of the particles with the rough channel

surface and the boundary of submerged jet [744]. Heat

transfer and flow visualization experiments were per-

formed to investigate the performance of swirling and

multi-channel impinging jets and compare the results

with those of a multi-channel impinging jet and conven-

tional impinging jet at the same conditions [745]. The

heated-thin-foil technique is used jointly with infrared

thermography to evaluate accurately the heat transfer

characteristics of one row of jets impinging on a flat

plate. The impingement is confined by the test section

and spent air is constrained to exit in only one direction,

[746]. Experimental investigation of convective heat

transfer under arrays of impinging air jets from slots

and circular holes is performed. The aim is to develop

the relationship between heat transfer coefficient, air

mass flow and fan power which is required for the opti-

mum design of nozzle systems [747]. In conventional
drying of coated substrates air impingement is usually

employed. Because of the high-velocity air flow, most

of the heat is transfered by convection and the heat

transfer coefficient is not uniform, leading to drying de-

fects. To overcome this and achieve a high uniform heat

transfer coefficient, the energy, is supplied to the back

side of the substrate by conduction through a thin air-

layer between a heated plate and the moving substrate

[748]. Surface heat transfer characteristics of a heated

slot jet impinging on a semicircular convex surface have

been investigated by using the transient heating liquid

crystal technique [749]. A combined buoyancy and iner-

tia driven vortex flow in an air jet impinging onto a

heated circular plate confined in a cylindrical chamber

is visualized [750]. The self-sustained oscillating flow

(vortex dynamics and energy transport) induced by a

plane jet impinging upon a smaller circular cylinder lo-

cated in the jet centerline within the potential core region

is experimentally examined [751]. Experiments were per-

formed to study the heat transfer characteristics of a pre-

mixed butane/air slot flame jet impinging normally on a

horizontal rectangular plate. The effects of the Reynolds

number and the nozzle-to-plate distance on heat transfer

were examined [752]. Detailed heat transfer distributions

are presented over a jet impingement target surface with

dimples. The effects of jet impingement, as an extremely

effective heat transfer enhancement technique, on a tar-

get surface with a dimple pattern is investigated, [753].

Numerical predictions of turbulent plane discharged

normal to a weak or moderate cross-stream are pro-

posed. The Reynolds-averaged Navier–Stokes equations

along with a standard k-epsilon turbulence model have

been used to formulate the flow problem [754]. Heat

transfer enhancement by the perforated installed be-

tween an impinging jet and the target plate is investi-

gated [755]. Turbulent heat transfer from a flat surface

to a swirling round impinging jet is studied [756]. Mea-

surements of a plane jet impinging onto a normal flat

plate placed up to five jet widths from the jet outlets

are presented. The small spacing ensured that the stag-

nation streamline remained in the potential core of the

jet [757]. Direct numerical simulations of an unsteady

impinging jet are performed to study momentum and

heat transfer characteristics. The unsteady compressible

Navier–Stokes equations are solved using a high-order

finite difference method with non-reflecting boundary

conditions [758]. A numerical finite difference approach

was used to compute the steady and unsteady flow and

heat transfer due to a confined two-dimensional slot

jet impinging on an isothermal plate [759]. Laminar

impinging flow heat transfer is considered with a purely

viscous inelastic fluid. The rheology of the fluid is mod-

eled using a strain rate dependent viscosity coupled with

asymptotic Newtonian behavior in the zero shear limit.

The velocity and temperature fields are computed

numerically for a confined laminar axisymmetric
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impinging flow [760]. In previous studies, the enhanced

cooling in the second pass of a serpentine channel was

achieved by a combination of impingement and cross-

flow induced swirl. In a continuing study, the focus is

to enhance the heat transfer in the first pass of the

two-pass channel using traditional rib turbulators

[761]. The results of a computational fluid dynamic

model is presented fro heat transfer under a semi-con-

fined slot turbulent jet under thermal boundary condi-

tions such that the temperature-dependence of the fluid

properties affects the flow and thermal fields. A compar-

ative analysis in the turbulent flow regimes is made of

the standard k-epsilon and Reynolds stress turbulence

models for constant target surface temperature [762].

Simulation results are presented for a single semi-con-

fined turbulent slot jet impinging normally on a flat

plate. Effects of turbulence models, near wall functions,

jet turbulence, jet Reynolds number, as well as the type

of thermal boundary condition at the target surface are

discussed in the light of experimental data [763].

A novel micromachined flow sensor capable of

detecting small amounts of volumetric flow rates and

extra-low flow velocities is developed. The innovative

flow sensor detects a periodic flapping motion of a pla-

nar jet impinging on a V-shaped plate downstream [764].

11.5. Jet impingement heat transfer—liquid jets

Analytical research was conducted to study the heat

transfer from horizontal surfaces to normally impinging

circular free-surface jets under arbitrary-heat-flux condi-

tions [765]. A numerical model is presented for the mix-

ing of an inclined submerged heated plane water jet in

calm fluid, which has some improvements over similar

models presented by various other investigators [766].

The flow and heat transfer characteristics of impinging

laminar square twin jets have been investigated numeri-

cally through the solution of three-dimensional Navier–

Stokes and energy equations in a steady-states [767]. A

method is presented which utilizes the hue-angle method

to process the color images captured from the liquid

crystal color play. Instantaneous temperature readings

from embedded thermocouples were utilized for in situ

calibration of hue angle for each data set [768]. Experi-

ments have been performed to assess the impact of an

extended surface on the heat transfer enhancement for

axisymmetric, turbulent liquid jet impingement on a

heated round disk [769]. The experimental details, data

acquisition and data handling techniques are presented

for steel plates during water jet impingement by one cir-

cular water jet from an industrial header [770].

11.6. Sprays

Artificial neutral networks (ANN) models have been

developed and applied to free propane sprays and to
water spray cooling heat flux predictions. For the pro-

pane spray conditions the ANN model is trained against

the computational fluid dynamics results and verified

against experimental data [771]. The dynamic modeling

of a spray dryer is suggested to be considered as series

of well-stirred dryers. That is, a series of dryers in which

the output variables are equal to the state variables. The

state equations were obtained from the heat and water

mass balances in product and air. Additionally, heat

and water mass balances in interface jointly with water

equilibrium relation between product and air were con-

sidered [772]. Spray impingement and fuel formation

models with cavitation have been developed and incor-

porated into the computational fluid dynamics code,

STAR-CD. The spray/wall interaction process was mod-

eled by considering the effects of surface temperature

conditions and fuel film formation [773].

11.7. Drying

A numerical code that can predict vacuum freeze

drying processes in trays and vials was developed using

finite volume method. A moving grid system is employed

to handle irregular and continuously changing physical

domains encountered during the primary drying stage

[774]. Finite element method is employed to solve the

non-linear unsteady partial differential equations

describing two-dimensional temperature and mois-

ture distributions within a single rice kernel during dry-

ing and tempering processes [775]. A mathematical

model of coupled heat and mass transfer was applied

to batch fluidized-bed drying with microwave heating

of a heat sensitive material-carrot. Four kinds of micro-

wave heating with intermittent variation were examined

[776]. The effects of superheated steam temperature and

convective heat transfer coefficient on the drying rate

and product quality attributes (shrinkage, density,

porosity, color, texture, and nutrition loss) of potato

chips was investigated [777]. A transient two-dimen-

sional mathematical model is developed to simulate

the through-air drying process for tufted textile materi-

als. The heat transfer in a cylindrical porous medium

and the air flowing around it are analyzed separately

[778]. A simplified model for drying solids in the con-

stant rate period in a batch fluidised bed was developed.

It assumes the bed to be divided into dense and bubble

phases with heat and mass transfer between the phases

[779]. Thermal modeling of the fluidized bed drying of

wet particles is considered to study heat and mass trans-

fer aspects and drying thermal efficiencies [780]. The

measuring method of the thermal conductivity and

water contents for single seed is experimentally studied.

Also an interrelated curve between the thermal conduc-

tivity and water contents for single seed is obtained

[781]. The theory behind a fluidized bed fast-drying

method is investigated as a potential time-saving pro-
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cess, which can reduce overall drying time compared to

single temperature cycles [782]. The heat-up and the dry-

ing of a packed bed consisting of large wood particles as

encountered in furnaces are measured and compared to

the predictions of a particle resolved approach [783]. A

detailed study of the drying kinetics for a range of milk

products has been conducted [784]. A study on the dry-

ing of thin layers of polymer solution containing two

volatile solvents is performed through experiments and

numerical simulations [785]. A simplified procedure for

modeling the performance of a low temperature heat

pump dryer was developed. The system modeled consists

of a vapor compression heat pump coupled to a contin-

uous cross flow bed dryer [786]. High performance pack-

ing, namely, structured packing that has good heat and

mass transfer characteristics, is proposed for dehumidi-

fication of air using liquid desiccants and for regenera-

tion of liquid desiccants [787]. Numerical simulation of

convection-microwave drying for a shrinking, discretely

non-homogeneous material is performed using finite ele-

ment technique [788]. Drying of multi-dimensional food

products is investigated analytically. A simple method is

developed for the determination of drying time of multi-

dimensional products using drying parameters that are

available from the literature or can be determined exper-

imentally [789]. A simple graphical method is proposed

to determine the drying moisture transfer parameters

such as moisture diffusivity and moisture transfer coeffi-

cient for solid products [790]. Drying of sawdust in an

atmospheric pressure spouted bed stream dryer is stud-

ied and the possibility to control the outgoing moisture

content using the exhaust temperature as a control

parameter is examined [791]. A control volume formula-

tion for the solution of a set of two-way coupled heat

and diffusive moisture transfer equations with an infra-

red source term is presented in three dimensions [792].

A thin film dryer (TFD) device has been used to study

the drying behavior of viscous products and their water

diffusivities. The thin product film was dried convec-

tively in different conditions [793]. A dimensionless anal-

ysis for the detailed equations of heat and mass transfer

during food drying was developed. This analysis was

carried out in tensor form of the equations. Some re-

ported and non-reported dimensionless groups were de-

ducted which were used to estimate the mechanisms that

control heat and mass transfer during food drying [794].

Three types of mathematical models have been devel-

oped for the simulation of kiln drying of softwood

lumber and the simulation of drying stresses: a single

board-drying model, akiln-wide drying model and a dry-

ing stress model [795]. Numerous experimental data are

generalized to calculate the basic characteristics (excess

vapor pressure, time of pressure setting, vapor flux) of

high-intensity drying with internal heat sources. The role

of pressure-gradient mass transfer is discussed [796].

Numerical simulation of static-bed drying of barley is
performed [797]. A mathematical model for continuous

drying of grains in a spouted bed dryer has been pre-

sented to predict moisture content, air and grain temper-

atures as well as energy consumption [798]. An overview

of the applications of the discrete element method

(DEM) in gas–solid flow systems is presented, discussing

further development of this technique in the application

of drying particulate solids [799]. The results of theoret-

ical and experimental studies on drying of aqueous sus-

pensions of finely dispersed solids sprayed over the

surface of an inert ceramic sphere are presented [800].

X-ray microtomography is proposed as a new tool to

investigate the evolution of size, shape, and texture of

soft materials during a drying operation. This study is

focused on the drying of mechanically dewatered sludges

from a secondary wastewater treatment [801]. The dry-

ing rates of zeolite pellets in spouted beds and in con-

ventional fan assisted ovens are studied [802]. Two

dimensional heat and mass flux equations were used to

describe preheating process during wood drying. Math-

ematical formulae of heat and moisture transfer to wood

were developed [803]. A comprehensive study of the

impingement heat transfer coefficient at high tempera-

tures is carried out and presented in this paper. The

aim of the study is to give a summary of the experimen-

tal results of the impingement heat transfer covering a

impingement air temperature range [804]. Reanalysis

of the drying background in wheat showed that analyt-

ical solutions may be employed in this grain to estimate

diffusion coefficients by using the simplified equation for

short times instead of the time-consuming series [805].

An improved numerical heat transfer model has been

developed for a rotary kiln used for drying and preheat-

ing of wet iron ore [806]. Development and validation of

mathematical models based on heat and mass transfer

principles for freeze-drying of vegetable slices are per-

formed [807]. A two-dimensional finite element model

was used to analyze isothermal thin layer drying of

wheat representing the grains as axisymmetric ellipsoids.

The effects of diffusion coefficient was estimated by min-

imizing the sum of squares of the residuals between

numerically predicted and experimental moistures

[808]. An experimental set up specially designed for the

investigation of drying kinetics, of heat transfer coeffi-

cient evolution, and of the mechanical torque necessary

for stirring. This device was applied to municipal sewage

sludge. Experiments were performed to investigate the

influence of aging of sludge on the drying kinetics

[809]. A newly developed Biot–Reynolds correlation to

determine the moisture transfer parameters is presented.

The development is based on the experimental data

taken from various sources in the literature [810]. A re-

cently developed Biot–Dincer correlation for drying

applications is presented. The developed correlation is

used to determine the moisture diffusivities and moisture

transfer coefficients for products subjected to drying
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[811]. Modeling of coupled heat and mass transfer dur-

ing convective drying of wood is performed [812].

11.8. Miscellaneous

A variety of studies in which heat and mass transfer

occurs in combination have been performed. These in-

cluded the cooking of foods [813–817], absorption

[818], combustion and flames [819–821], chemical react-

ing flows [822,823], and two/multiple-phase flows [824–

827]. Thermophoresis of particles in gas-particle two-

phase flow with radiation effect is studied [828]. Model-

ing of frost growth and frost properties with airflow over

a flat plate [829] was performed. An engineering model

for coupled heat and mass transfer analysis in heated

concrete was established [830]. A mathematical model

for description of coupled mechanical, thermal and dif-

fusive processes in semitransparent amorphous solid

with molecular gaseous admixture subjected to thermal

infrared radiation was developed [831]. Heat transfer

in combustors [832] and heat transfer in an aircraft

nacelle anti-icing system [833] were also studied.

Researchers also studied cylindrical pin-fin fan-sink heat

transfer and pressure drop correlations [834].
12. Bioheat transfer

The present review is only a small portion of the

overall literature in this area. This represents work pre-

dominantly in engineering journals with occasional basic

science and biomedical journals included. This is a very

dynamic and cross disciplinary area of research, and

thus, this review should be taken as more of an over-

view, particularly from an engineering point of view,

rather than an exhaustive list of all work in this area

for this year. Subsections include work in cryobiology

including preservation, thermal therapies as well as

hyperthermic biology with thermal therapies and burn

injury. Further sections dealing with thermal properties,

thermal comfort/regulation and general papers are

presented.

12.1. Cryobiology

Heat transfer work in the area of cryobiology falls

broadly into the area of cryopreservation and cryosur-

gery which seek to either preserve or destroy cells or tis-

sues by cooling or freezing. Traditional cryopreservation

of engineered tissues was numerically studied by Cui

[835], while an analysis of freeze-drying in vials was pre-

sented by Brulls [836]. Although cryopreservation usu-

ally is intended to maintain the biological viability of

the material, one offshoot of this is also to preserve

ultrastructual integrity for electron microscopy by extre-

mely rapid freezing. This has been applied to the study
of polysaccharide ultrastructures in hydrogels [837].

Basic studies of latent heat evolution during freezing

of cryobiologically relevant solutions and during cellular

dehydration and intracellular ice formation in tissues

was presented by Devireddy [838,839].

Studies relevant to hypothermic tissue preservation

include a method to control brain temperature [840],

as well as the effect of lowering temperature on the oxy-

gen transport during brain hypothermia resuscitation

[841]. The characterization of a novel intravascular cath-

eter for induction and reversal of hypothermia in a por-

cine model was also presented [842]. A method for

estimation of time-dependent surface heat flux due to

cryogen spray cooling in laser treatments was presented

[843]. Lastly, studies relevant to cryosurgery investigated

the freezing and thawing of skin [844], and the thawing

of multiple frozen regions simultaneously [845].

12.2. Hyperthermic biology

12.2.1. Thermal therapies

Thermal therapies usually include one or more

sources of power being delivered locally to treat tissue

by reaching hyperthermic temperatures. The normal en-

ergy sources include laser, radiofrequency (RF), micro-

wave, and high intensity focused ultrasound. Studies in

the laser area include heat transfer characteristics of

bio-materials irradiated by pulsed-laser [846]; the effect

of thermal lensing during selective photothermolysis

[847]; spray cooling efficiency during port wine stain la-

ser treatments [848]; and a study of residual thermal

damage, ablation, and wound healing as a function of

erbium laser pulse duration [849]. A finite element anal-

ysis of constant-power invasive microwave coagulation

of liver tumors was presented [850]. Radiofrequency

studies included work on a test apparatus for evaluating

the heating pattern of radiofrequency ablation devices

[851] and the evaluation of RF treatment of tonsillar

hypertrophy [852]. General work in hyperthermic ther-

mal therapies included estimation of heat transfer and

temperature rise in partial-body regions during MR pro-

cedures [853]; three-dimensional modelling and optimi-

zation of thermal fields induced during hyperthermia

[854]; thermal dose optimization in hyperthermia treat-

ments by using the conjugate gradient method [855];

and W-band investigation of material parameters,

SAR distribution, and thermal response in human tissue

[856]. In addition, several studies on the prediction of

burn injuries in the skin were presented [857,858].

Novel methods of hyperthermic treatment include

using magnetic fluid hyperthermia which was evaluated

under accelerated simulation conditions [859]; a field-

focusing device to increase power output of thermorod

(TM) implants for thermal ablation of tissue [860]; and

the study of a synergistic cell-killing by combination of

hyperthermia and heavy ion beam irradiation for refrac-
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tory cancers [861]. Additionally, a novel design for a

mammary gland tumor phantom for microwave radio-

metry was constructed [862].

12.2.2. Thermal properties

Thermal property work focused on blood flow as well

as conductivity and specific heat measurements as well

as novel mechanisms of heat flow using nanofluidics.

These included the determination of thermal diffusivity

of mortadella using actual cooking process data [863];

while the precooking and cooling of skipjack tuna was

also studied numerically [864]. A method using sinusoi-

dal heating to non-invasively measure tissue perfusion

was introduced [865]. Also the mechanisms of heat flow

in suspensions of nanosized particles (nanofluids) was

studied [866].

12.2.3. Thermal regulation/comfort

Thermal regulation is important for all living ani-

mals, but is especially important clinically for premature

infants and patients undergoing surgery who have im-

paired thermoregulatory mechanisms. To address this

warming systems with upper body blankets using a

copper manikin of the human body were compared by

Brauer [867]. In premature infants unsteady heat con-

duction was studied numerically [868]; and by experi-

mental and numerical studies for convective heat

transfer in a neonatal incubator [869]. In addition, a spe-

cial warming blanket to prevent core hypothermia dur-

ing major neonatal surgery was also presented [870].

Work in animals included a model of respiratory heat

loss in the sheep [871]; in-vivo non-invasive study of

the thermoregulatory function of the blood vessels in

the rat tail using magnetic resonance angiography

[872]; and the effect of environmental temperature on

body temperature and metabolic heat production in a

heterothermic rodent [873]. Evaluation of thermal com-

fort using a combined multi-node thermoregulation and

radiation model with computational fluid dynamics

(CFD) was also presented [874].

12.2.4. General/miscellaneous

General work included a Boussinesq model of natu-

ral convection in the human eye and the formation of

Krukenberg�s spindle [875]; and a new fundamental bio-
heat equation for muscle tissue [876].
13. Change of phase—boiling and evaporation

Papers on boiling change of phase for 2002 have been

categorized as follows: droplet and film evaporation,

bubble characteristics and boiling incipience, pool boil-

ing, film boiling, flow or forced convection boiling and

two-phase thermohydrodynamic phenomena. These top-

ics are discussed in their respective subsections below.
13.1. Droplet and film evaporation

Papers in this category discuss such areas as droplet

heat transfer, film heat transfer and spray cooling.

The effects of spray parameters on critical heat flux

(CHF) in subcooled spray cooling were documented

experimentally [877]. For a hot plate facing upward being

cooled with impinging water droplets [878] the authors

note the importance of droplet internal fluid motion.

The isotropic turbulence flow field effect on single liquid

droplet evaporation was correlated [879] for mono- and

bi-component droplets. Droplet evaporation in the dry-

ing of a salt solution in a pulsating flow was experimen-

tally evaluated [880]. Pulsation led to high evaporation

rates and short drying times. Evaporation of acoustically

levitated droplets of binary liquid mixtures was modeled

[881]. The effects of acoustic streaming near the droplet

surface were discussed. A spray cooling experiment

[882] showed the importance of the interaction of the

departing bubbles and the impinging droplets. A model

was used to describe the effect of a near-wall droplet-free

zone [883]. Heat transfer in internal flows through pipes

showed enhancement due to elbows [884]. The influence

of Marangoni convection in a two-component flow with

droplets was described [885]. The velocity field, as driven

by Marangoni flow, was measured by monitoring the

motion of tracers within the droplet [886]. A numerical

study showed the effects of fluid properties on cooling

of a plate with a mist spray [887].

Droplet evaporation in porous and non-porous sur-

faces was experimentally evaluated [888]. The impor-

tance of radiation was noted. Evaporation on a wall

screen was documented [889]. Enhancement over single

phase flow was noted. The effects of roughness on drop-

let impingement heat transfer were discussed with

emphasis on the contact angle and interfacial behavior

[890]. The effects of heating on the advancing and reced-

ing contact angles were noted. Quenching of steel plates

was experimentally documented [891]. The sensitivities

to some flow parameters were quantified. The evolution

of the liquid film under the droplet on a steel surface was

documented [892]. Fluids of various properties were

tested. Existing models which describe the liquid film

behavior were considered to be inadequate.

Modeling of an evaporating droplet stream was sup-

ported by measuring the energy budget using optical

methods [893] and a model for describing the deforming

interfaces during droplet impingement was presented

[894]. The attributes of the measurement method were

presented. The effects of pressure and temperature

non-uniformities on surface tension in non-equilibrium

liquid-gas flows were discussed [895]. High evaporation

rates require large corrections in surface tension values.

Simulation methods to be applied to combusting flows

were developed [896] for application to a sudden-expan-

sion combustor.
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A fringe-probing method for measuring the contact

diameter and microdroplet diameter in droplet-impact-

ing flow was presented [897] and the value of using a

two-color, laser-induced fluorescence method for docu-

menting the temperature field around evaporating drops

was discussed [898]. The latter revealed two distinct

phases of droplet evaporation, the first is a rapid temper-

ature drop and the second is with a reduced cooling rate

due to the enhanced fuel vapor concentration at the

surface.

The effect of heat transfer to a supporting fiber on

droplet evaporation was experimentally evaluated

[899]. Calculations of enhancement due to conduction

to the fiber were in agreement with the experimental re-

sults. Drying with superheated steam was theoretically

addressed [900]. Results were presented in terms of an

inversion temperature where the dry air and superheated

steam drying rates matched. Freezing of water droplets

due to evaporation in a heat storage device was de-

scribed [901]. The system is to store ‘‘cold’’ from LNG

liquefaction plants.

Falling film evaporation with non-Newtonian fluids

was numerically evaluated [902]. Larger heat transfer

coefficients were found with higher concentrations of

the solution. Film evaporation with dissolved solids

and highly viscous liquids was modeled [903]. Falling

film evaporation rates were predicted. Molecular dy-

namic simulations were used to compute ultra-thin layer

evaporation of argon on a surface [904] when the surface

temperature was rapidly raised. Cooling from high sur-

face temperatures created an unstable vapor film that

deformed to form spherical shapes. Evaporation of li-

quid jets in gas–solid suspension flows was studied para-

metrically [905]. Film evaporation rates inside a vertical

tube were measured with fluids of various properties

[906]. Ranges of suitability of a certain correlations for

heat transfer coefficients were given in terms of values

of dimensionless groups.

Film evaporation of HCFC22 inside horizontal tubes

was evaluated and optimal geometries for the placing of

spiral fins on the surface were documented [907]. The ef-

fects of capillary tube radius on evaporation of the thin

liquid film and meniscus were modeled [908]. Heat trans-

fer was by conduction through the liquid film and evap-

oration at the interface. Evaporation of thin liquid

falling films on bundles of enhanced-surface tubes was

discussed in terms of the liquid flow patterns which were

shown to vary with liquid flow rates [909]. Salt/water

mixture falling film evaporation on roll-worked, en-

hanced tubes and tube bundles were experimentally eval-

uated [910]. Enhancement via this low-cost surface

preparation was recorded to be comparable to the more

expensive commercial enhanced surfaces for boiling.

Evaporation inside of smooth and enhanced-surface

tubes was experimentally evaluated [911] to document

the performance of the enhanced surfaces. Evaporation
from V-shaped microgrooves was evaluated [912]. The

effects of axial flow through the microgroove when the

tube was strongly inclined were documented. Liquid

evaporation in isotropic porous media with non-Darcy

flow effects was analytically described [913]. The evapo-

ration rates are more pronounced when large inertial ef-

fects are present.

Calculations were presented for the evaporation rate

of water from undisturbed pools [914]. Correlations

were tested against data from several sources. Heat

transfer and evaporation in a pool fire were computed

[915]. Effects of lip height and flame emissive power were

discussed. Flash evaporation with a sudden pressure

drop was described by experiments [916]. A correlation

between the mass evaporated by flashing and the super-

heat of the flow was developed.

The influence of the flowfield on heat transfer to a

sliding bubble was analyzed and measured [917]. Unless

vaporization rates are high, the film thickness was found

to be determined by flow phenomena rather than by heat

transfer. Breakup of an evaporating film falling down a

vertical wall was analyzed [918]. The influences of

important parameters, such as Marangoni number and

Reynolds number, were evaluated. The effect of pulsing

the heat source on the evaporation of superfluid helium

was measured [919]. Evaporation was caused by second

sound thermal shock onto the free surface.

A model was developed for evaporative film cooling

on a vertical, rectangular channel [920]. Included in

the investigation was assessment of using a multipurpose

commercial CFD code for simulating mass transfer phe-

nomena in the nuclear field. Molecular dynamic model-

ing was applied to simulations of two-component fluids

[921]. In was shown that irreversible thermodynamic

theory can be used to describe transport phenomena.

The relative importance of heat and mass transfer

in drying was assessed via a model [922] and the cooling

of birds by cutaneous water evaporation was described

[923].

13.2. Bubble characteristics and boiling incipience

Evaporation of a constrained bubble was modeled

[924]. Evaporation near the contact line was balanced

by condensation in the colder regions. The time-depen-

dent behavior was described for cases of small capillary

number. Nucleate boiling off a fine wire was experimen-

tally described in terms of jetting of the departing vapor

bubbles [925]. Several different jetting regimes were iden-

tified and it was noted that vapor departure is quite dif-

ferent than usually seen in nucleate boiling. Bubble

characteristics of two-phase flow in large-diameter pipes

were observed [926]. Probability density function (PDF)

description of the bubble flow was used to document a

short development length. Experimental documentation

of bubble behavior, including bubble growth rates and
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time of attachment, was used to characterize transition

from partially- to fully-developed subcooled flow boiling

[927].

Bubble behavior in subcooled flow boiling in upward

flow was experimentally documented [928]. This behav-

ior, in terms of growth rates and variation of bubble life-

time, was correlated with flow parameters. Single sliding

bubble behavior was experimentally documented [929]

and related to the gravity level. In a related experiment,

the behavior of a single bubble sliding on a downward-

facing heated surface was documented [930]. A numeri-

cal solution was presented which describes bubble

merger events from a single nucleation site [931]. The

pattern was shown to compare well with experimental

observations. A model based upon pseudo-equilibrium

was used to describe heat transfer in boiling liquids,

including the bubble formation and relaxation stages

of the bubble cycle [932]. A method was presented to de-

scribe the transient behavior of ultra-fast heating with a

pulsed laser beam [933]. Wave-type heat transfer as a

shock wave, with wave change, was simulated.

The flow structure of a wake behind a bubble was

visualized with a Schlieren optical technique [934]. Mass

transfer around a bubble during surface nucleate boil-

ing, including vaporization and condensation processes

around the bubble, was investigated analytically [935].

Experiments showed a thermal jet at the cap of the bub-

ble due to interfacial vapor condensation.

Thermodynamic bifurcation models were used to de-

scribe transitions among different boiling modes caused

by interactions among active sites or dry patches [936].

A non-linear non-equilibrium statistical thermodynam-

ics model was used to predict phase transition caused

by the interaction among active sites or bubbles [937].

Measurements were taken to describe the effects of

decreasing the distance between active nucleation sites

[938]. The results were used to describe the interaction

between competing sites. The influences of active sites

on one another were shown to be mutual. Detailed mea-

surements were taken on tiny resistors to document bub-

ble nucleation on microsurfaces [939]. A first-order

model for nucleation in the microscale was proposed.

Data on incipience in microchannels were analyzed

[940]. Thermocapillary forces tend to suppress the

microbubbles that form in the wall cavities. Incipience

of boiling in microchannels was experimentally docu-

mented [941]. The likelihood of bubbles growing suffi-

ciently large to engulf the entire flow area of the

microchannel was assessed. The effects of surfactants

on subcooled boiling hysteresis were experimentally doc-

umented [942]. Boiling hysteresis features were recorded

for degraded solutions.

Bubble motion control by ultrasonic waves was

investigated experimentally and analytically [943]. The

motion and equilibrium positions were predicted by

solving the Rayleigh–Pleset equation and bubble motion
equation. Photoacoustic cavitation was computed using

a finite element method [944]. Guidelines were offered

for reducing the occurrence of cavitation and extending

the useful duration of a temperature jump. The effects of

liquid metal magnetohydrodynamic (MHD) forces on

the deformation and breakup of bubbles were computed

[945]. A diagram for stability and breakup was created.

Boiling of magnetic fluids in heat pipe applications was

observed [946]. Degradation of the fluid during boiling

was documented.

A model was presented for interfacial forces in bub-

bly flow in vertical channels [947]. The model predicted

the lateral phase distribution in vertical channels. Exper-

imental methods for documenting interfacial structures

were presented [948]. The relative merits of the probes

tested and visualization techniques were offered. Accu-

racy of measurements of apparent contact angle in a

constrained vapor bubble heat exchanger was discussed

[949]. Improved techniques were presented. The influ-

ence of dispersion forces on phase equilibrium between

thin liquid films and their vapor was discussed [950].

The Gibbs assumption of a geometrical interface was

shown to not hold. The internal pressure field of a vio-

lently collapsing bubble was computed with direct

numerical solution of the Navier–Stokes equations

[951]. Criteria required for application of a uniform

pressure assumption were presented.

Experimental results were presented for direct con-

tact heat and mass transfer of air bubbles in a hot water

layer [952]. Air bubble flow patterns were identified and

classified.

13.3. Pool boiling

Results of subcooled boiling experiments on a corru-

gated plate vertical heat exchanger were presented [953].

The data showed a change in the boiling curves at the

onset of nucleate boiling. The effects of roughness of

horizontally- and vertically-oriented ribbon heaters were

documented [954]. Different surface treatments were

used to create different roughness features. Improvement

of boiling with a special boiling surface in a horizontal

kettle boiler was experimentally evaluated [955]. Heat

transfer coefficients reached five times the plane tube val-

ues. Boiling on plasma spray coated surfaces was evalu-

ated for R-134a and R-600a [956]. Measurements

included departure diameters, velocities and frequencies

and nucleation site densities. The boiling crisis was

experimentally evaluated on vapor-deposited, sub-

micron metallic films [957]. A stark difference between

performance on fresh and aged heaters was revealed.

A study on the same surface investigated dryout and

burnout [958]. Nucleate boiling enhancement on micro-

porous surfaces in saturated FC-72 was documented

[959]. The increased nucleation site density yielded in-

creased hydrodynamic stability from increased vapor
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inertia and the CHF values were enhanced by the micro-

porous surface. The structure had pores that inter-

connected the microchannels of the microporous

structures to enhance nucleation [960]. High speed pho-

tography was used to characterize pool boiling from a

tubular heater surface with structured re-entrant cavities

[961]. In another study on coated porous surfaces, the ef-

fects of channel shape were evaluated [962]. Heat trans-

fer performance was improved if the channels were

open. Boiling on a porous metallic coating was experi-

mentally documented [963]. Burnout heat fluxes were

shown to be nearly independent of the surface finish.

The value of having micro pin fins or submicron scale

roughness elements on the surface was experimentally

assessed [964]. In the high heat flux region, the pin fin

with submicron roughness on it showed the best perfor-

mance. Boiling with a square pin fin array was measured

[965]. Twelve extended surfaces were tested. Screwed fins

were tested in saturated pool nucleate boiling [966]. The

interstices between the heating surface and the screwed

fins were found to supply the bubble nuclei.

Boiling with binary mixtures was experimentally

evaluated [967]. Both binary and ternary mixtures

showed lower heat transfer coefficients than ideal values

calculated from a mole fraction average of the wall

superheats of pure components. Measurements of heat

transfer coefficients of a mixture of ammonia and water

on a horizontal heated wire were made [968]. The coef-

ficients in the mixtures were markedly less than those

in single-component substances. Experiments on bubble

growth in He-3 at 1 K were presented [969]. The bubbles

were spheroid-like due to the low surface tension. Pre-

dictions of boiling with additives were analyzed with

neural network analysis [970]. The training accuracy

was shown to be 100% accurate for the data set tested.

An analytical model was applied to nucleate pool boiling

with surfactant additives [971]. The effects of surfactant

addition were described in terms of the manner by which

it concentrates on the interface [972]. The effects of sur-

face wettability on nucleate pool boiling with surfactant

solutions were measured [973]. Effects of roughness were

also addressed. The effects of bulk lubrication concen-

tration on excess surface density with R123 pool boiling

on a roughened surface were measured [974]. The excess

lubricant, which resides in a very thin layer on the sur-

face, influences boiling performance. Another paper

[975] explained the technique used for the measure-

ments, a spectrofluorometer.

The effects of an applied acoustic cavitation field

were analyzed [976]. Acoustic cavitation enhanced the

boiling heat transfer remarkably. A companion paper

discussed the effects of cavitation on the nucleation,

growth and collapse of bubbles [977]. Another paper

on the same topic discussed the effects of adding nano-

meter granules to the flow [978]. The granules weakened

the generation of bubbles. The effects on bubble dynam-
ics of an applied electric field were visualized [979]. For a

given heat flux, the electric field reduced the surface tem-

perature. Measurements of the influence of an electric

field were conducted in a low-gravity environment

[980]. With sufficiently intense electric field, heat transfer

coefficients and CHF values of 1 g boiling were attained.

Boiling on a vertical row of horizontal tubes was

measured [981]. The model developed was shown to ap-

ply to a variety of fluids. The effects of diameter on small

horizontal tubes were measured [982]. Conventional

pool boiling correlations yielded acceptable results. A

dynamic microlayer model was developed to describe

the stages of the bubble cycle for experiments with boil-

ing off a wire [983]. The boiling behavior for a vertical

annular crevice was experimentally documented

[984,985]. The annular geometry gave increased heat

transfer coefficients at moderate heat fluxes compared

to single tube data. Measurements were made for boiling

in a vertical, small-diameter tube under natural circula-

tion [986].

A microlayer model presented to describe transient

pool boiling indicated conditions in which there can be

direct transition from non-boiling to film boiling [987].

A model was given to predict contact line length at

CHF [988]. Nucleation site density was measured with

video pictures in support of the model. A model was

developed for describing the growth of a bubble under

transient pool boiling conditions [989]. The effect of

the initial radius of the bubble was discussed.

A spatio-temporal analysis of nucleate pool boiling

was developed [990]. Nucleation sites were identified

using non-orthogonal empirical functions. Data were

obtained with liquid crystal thermography and high

speed video. Dynamic heating was studied in a micro-

gravity environment [991]. A pure fluid was heated near

the critical point and an unusual process was recorded

where the vapor phase temperature can pass well beyond

the temperature of the heating walls. Highly subcooled

pool boiling measurements were taken in gravity-fields

that ranged from micrograms to 2 g [992]. There was lit-

tle effect of gravity on wall superheats below a given

temperature even though there was a large effect of

gravity on the bubble behavior. Strong Marangoni con-

vection was observed at low-gravity. Similar measure-

ments were taken on small heaters [993]. Boiling was

dominated by the formation of a large primary bubble

on the surface which acted as a sink for smaller sur-

rounding bubbles. Dryout was under the primary

bubble.

Bubble dynamics on microheaters was documented

to describe coalescence of bubbles [994]. Coalescence

was when the bubbles grow to a certain size that allows

them to touch each other. A microlayer model was used

to predict CHF in subcooled pool boiling [995] and fully

developed nucleate boiling heat transfer [996]. Simula-

tions of CHF in non-heating experiments were effected
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by controlled air flow through holes in the simulated

boiling surface [997]. It was suggested that this method

is a convenient one to measure CHF without an expen-

sive facility. An analogy between boiling heat transfer

and dissolution of a gas under a vacuum was discussed

[998].

13.4. Film boiling

A mechanistic model of the Leidenfrost point was

presented [999]. The models could be applied to both

pools of liquid and sessile droplets and can be applied

to rough surfaces. Forced convection film boiling was

experimentally studied [1000]. The influence of subcool-

ing was documented and rewetting dynamics were de-

scribed. Fog cooling of hot surfaces was measured

[1001]. Strong effects of cleanliness were identified. Bub-

ble growth mechanisms were numerically simulated to

describe film boiling processes [1002]. Gravity and sur-

face tension effects were discussed. Numerical analyses,

including conjugate heat transfer, were employed to

evaluate film boiling on horizontal surfaces [1003]. The

effects of energy exchange between a horizontal solid

wall and the boiling fluid during saturated film boiling

were described. An analysis of the stability of a vapor

film on a hot wall under subcooled film boiling condi-

tions was described [1004]. Measured film boiling data

on horizontal cylinders were correlated for water and

Freon 113 [1005].

13.5. Flow boiling

A two-phase flow pattern map for horizontal flow

boiling was presented [1006]. It was used to predict onset

of dryout at the top of the tube. The circumferential

variation of heat transfer coefficient during in-tube

evaporation for R-22 and R-407C was documented

experimentally by using liquid crystals [1007]. Strong

variations were noted when the heat transfer coefficients

were high. A flow pattern dependent heat transfer model

for a horizontal tube was developed and compared with

data [1008]. It was show to accurately model heat trans-

fer during evaporation with selected refrigerants. Exper-

imental results described pressure drop, heat transfer

and CHF in a small-diameter horizontal tube [1009].

Modifications to a two-phase pressure multiplier corre-

lation were needed. Experimental results were used to

describe heat transfer and pressure drop in narrow rect-

angular channels that might be applied in electronic

cooling systems [1010]. Onset of flow instabilities and

CHF when using multiple horizontal passages were

investigated [1011]. Boiling two-phase heat transfer of

LN2 in downward flow in a pipe was experimentally

documented [1012]. An estimation method for predic-

tion of flow features, including onset of instability, was

presented. The influence of bubble size on transition
from low-Reynolds number bubbly flow to slug flow in

a vertical pipe was experimentally described [1013].

The effects of the inlet conditions were addressed.

Forced convection boiling of steam and water in a ver-

tical annulus at high qualities was measured [1014].

Some correlations were evaluated. Turbulent subcooled

boiling in an annular channel was experimentally and

numerically studied [1015]. Simultaneous measurements

of velocity and temperature were taken and used to eval-

uate the turbulent Prandtl number. The heat/mass trans-

fer analogy was considered for two-phase flows in

narrow channels [1016]. Though the two share a require-

ment for accurate estimation of the thickness of the li-

quid film between confined bubbles and the channel

wall, no useful analogy was found. A better model for

low-pressure subcooled boiling was developed and put

into RELAP5/MOD2 [1017]. A two-fluid model was

tested for application to subcooled boiling in an annular

channel [1018]. Some weaknesses were identified. A

mechanism for hydrodynamically-controlled onset of

significant voiding in microtubes was proposed [1019].

Important is the process of bubble departure from the

walls. A CHF correlation was presented for subcooled

boiling in narrow channels [1020]. Experimental results

were used for modeling support. A conjugate analysis

was applied to flow boiling in order to describe the

non-uniformity of heating of the channel [1021]. A facil-

ity was described for measurements of three-dimen-

sional, local subcooled flow boiling heat flux and CHF

in plasma-facing walls [1022]. Measurements of bubble

characteristics in subcooled flow boiling were made with

digital imaging [1023]. A void fraction model was

formulated.

Flow boiling in channels with cross-corrugated walls

was investigated [1024] and convective boiling in a com-

pact serrated plate-fin heat exchanger was experimen-

tally evaluated [1025]. The heat exchanger flow was

characteristic of slug flow rather than annular. CHF val-

ues were measured in a vertical, spirally-internally-

ribbed tube under high-pressure conditions [1026].

Enhancement was demonstrated. Experiments docu-

mented forced convection boiling of fluorocarbon liquid

in reduced size channels [1027]. One surface was with

longitudinal microfins on the chip (heater). Heat transfer

and flow patterns for two-phase flow of R-134a in hor-

izontal smooth and microfin tubes were measured

[1028]. Flow maps were developed. A new correlation

of heat transfer coefficients was presented for evapora-

tion of refrigerants in microfin tubes [1029]. Though

simpler, the new correlation was shown to be more accu-

rate than the existing correlations when applied against

the chosen data set of 749 points. The effects of enhance-

ment geometries on flow instabilities were experimen-

tally evaluated [1030]. A comparison with bare tube

performance was presented in terms of flow stability.

Flow boiling with enhanced tubes having pores and
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connecting gaps was experimentally evaluated [1031].

The pore size for maximum heat transfer coefficient

was dependent on fluid and enhancement geometry.

The effects of flow obstructions in a vertical tube cooled

with upward flow of R-134a were measured [1032].

Important were (1) the degree of flow blockage, (2) the

obstruction shape, (3) the leading and training edge

shapes and (4) the streamwise separation of flow

obstructions. The onset of nucleate boiling and active

nucleation site density were measured for subcooled

boiling [1033]. Correlations for nucleation site density

were given. Subcooled boiling modeling for low-pressure

conditions for inclusion in thermal–hydraulic codes was

addressed [1034]. Experimental data were used for veri-

fication. A model was developed for flow boiling in an

annulus [1035]. The model was put into a commercial

code and comparisons were made against data. A

drift-flux model was developed for bubbly flow [1036].

Recommendations were given for using the results for

modeling developing bubble flow. A model was pre-

sented for predicting one-component, critical, two-phase

pipe flow [1037]. Data were taken and a correlation was

developed for predicting interfacial heat transfer in sub-

cooled flow boiling [1038]. Condensation heat transfer at

the interface is time dependent. A non-equilibrium heat

transfer model was presented for post-dryout, dispersed

flow. Radiation was shown to be important [1039].

Experiments were conducted to study boiling mecha-

nisms in all boiling regimes under steady-state and tran-

sition conditions [1040]. Boiling curves were different for

transient heating versus steady-state conditions. Experi-

ments were conduced to describe controlled cooling of a

hot plate with a water jet [1041]. Transition from nucle-

ate to film boiling was described.

An analysis was given for heat transfer and CHF of

He II in a duct [1042]. Several vortices were generated

around the heated surface. They were shown to have

an important role in determining CHF. A prediction

of CHF in He II was presented for flow through a chan-

nel having a step change in cross-sectional area [1043]. A

two-fluid model and the theory of mutual friction were

applied to predict CHF. Heat transfer measurements

were made in forced convection flow of ammonia in a

vertical tube for application to refrigeration units

[1044]. A comparison was made of measured CHF val-

ues in horizontal and vertical tubes cooled with R-

134a [1045]. An annular flow model was given for pure

fluids and multicomponent mixtures [1046]. Compari-

sons were made against data. The inclusion of an en-

trained fraction correlation led to the best correlation.

Flow boiling measurements were taken with n-heptane

and with H2O in microchannels of rectangular cross sec-

tion [1047]. Measurements of boiling heat transfer of ter-

nary mixtures at high qualities were taken [1048]. Local

concentration non-equilibrium was taken into account

in modeling the data. The influence of thermophysical
properties on two-phase, enhanced-surface, channel flow

boiling of refrigerants mixtures was presented [1049].

The effects of polarity on two-phase capillary tube flow

were measured [1050]. Stronger polar fluids lead to

much stronger disjoining pressures and evaporation is

choked because liquid molecules on the vapor–liquid

interface are strongly attracted by the solid wall. Boiling

with binary mixed magnetic fluids was discussed [1051].

It was shown that heat transfer rates were improved by

an applied magnet field when at the higher flow rates.

Visualization studies documented the effect of orien-

tation of the surface on CHF [1052]. An interfacial

lift-off model was modified and used to predict the orien-

tation effect. Experiments were conducted to describe

the effects of body force, surface tension force and iner-

tial force on flow boiling CHF [1053]. Characteristics of

the vapor layer were described. Numerical modeling of

low-pressure subcooled boiling flows was discussed

[1054]. It was shown that models developed for higher

pressures may not be suitable for low-pressure pre-

dictions. Electrohydrodynamically (EHD) enhanced

convective boiling of alternative refrigerants for applica-

tion to smooth and enhanced tubes was discussed [1055].

A theoretical analysis determined the contributing terms

of the EHD power consumption. Transient convective

heat transfer coefficients of steam–water, two-phase flow

in a helical tube under oscillatory flow conditions were

measured [1056]. Correlations were proposed for steady

and oscillatory flows. Equations for describing pressure

wave propagation in bubbly fluids at very low void frac-

tions were derived [1057]. In the ideal case, it was found

that pressure waves damp to zero whereas the bubbles

continue to oscillate but with the oscillations becoming

incoherent. CHF in natural circulation boiling in verti-

cal tubes was experimentally studied [1058]. The effects

the oscillatory flow induced near CHF on CHF were

discussed.

13.6. Two-phase thermohydrodynamic phenomena

A correlation was presented for heat and mass

transfer on a porous sphere saturated with liquid and

evaporating in a natural convection flow [1059]. Visual-

ization was made of evaporation in capillary porous

structures [1060]. A wire mesh was used as the porous

wall geometry. Local dryout due to trapped bubbles

leads to a decrease in heat transfer coefficient. An

experimental study was made of evaporative heat trans-

fer in sintered copper bi-dispersed wick structures

[1061]. For the bi-dispersed wicks with the same small

pore size, there exists an optimum large pore diameter

that gives both the highest heat transfer coefficient and

the highest CHF. A numerical study was conducted on

heat transfer to homogeneous porous media [1062].

This is used in steam injection operations for an effec-

tive heating of porous media. A mechanism was pre-
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sented for vaporization inside a microfin tube [1063].

The work defined the contributions made by nucleate

boiling to the microfin tube evaporation performance.

Liner stability analysis was applied to horizontal,

two-phase flow with EHD extraction [1064]. The pres-

ence of the electric field promotes instabilities. An

expression for critical Weber number was developed

for toluene droplets dropping on the heated wall

[1065]. A study of the spreading process was presented

to find the conditions needed to get the droplets onto

the heated surface. Experimental results were presented

for flashing liquid jets in a highly expanded flow [1066].

Photography was used to describe the flashing process.

Microscale explosive vaporization of water on an ultra-

thin Pt wire was experimentally characterized [1067].

Important is the nucleation dynamics. The effects of

polymer, surfactant and salt additives to the mitigation

and suppression of vapor explosions were experimen-

tally documented [1068]. The effect of capillarity on

heat transfer at the interface was analyzed [1069]. The

capillarity is helpful for increasing the condensation

rate from vapor to liquid.
14. Change of phase—condensation

14.1. Modeling and analysis

Du and Wang [1070] modify the classical Nusselt

theory and account for the effect of surface tension ex-

erted by condensate film bending as well as the effect of

shear stress on the vapor–liquid interface. El-Moghazy

[1071] develops a simple model for heat transfer to hor-

izontal low finned tubes by analyzing the region of thin

condensate film where the tube is flooded. The effect of

dust particles on the film flow in the initial region and

on the intensity of heat and mass transfer is demon-

strated for a vapor–gas mixture [1072]. A stratified flow

model of film condensation in helically grooved micro-

fin tubes has been proposed [1073]. The height of

stratified condensate is estimated by extending the

Taitel–Dukler model for smooth tubes, and assuming

laminar film condensation on the surface exposed to

the vapor flow, and an empirical equation for the lower

part. An analytical study by Kliakhandler et al. [1074]

indicates that heat conduction in the vapor phase be-

comes important as the condensate film becomes thick,

and cannot be neglected as is usually done. An iterative

condensation model for steam condensation is proposed

that uses the heat and mass transfer analogy to account

for the effects of high mass transfer, entrance effect, and

interfacial waviness effect on condensation in the pres-

ence of a non-condensable gas in a vertical tube

[1075]. A non-iterative model based on the iterative

model is derived by assuming the same profile of the

steam mass fraction as that of the gas temperature in
the gas film boundary layer, and gives reasonable

results.

Rose [1076] presents a semi-empirical model of film

condensation on a horizontal wire-wrapped tube that

accounts for capillary condensate retention between

the wire and tube. The theoretical enhancement ratio de-

pends only on the tube and wire diameters, wire pitch,

surface tension and density of the condensate, and is

independent of the vapour-to-surface temperature

difference.

Condensate film distribution inside the cave-shaped

cavity of a flat plate heat pipe is shown to depend on

the mass flow rate and local velocity of the condensate

[1077]. A homogeneous model approach is employed in

the estimation of shear velocity, which is subsequently,

made use of in predicting local convective condensation

heat transfer coefficients inside a horizontal condenser

tube [1078]. Downward flow over a horizontal tube is

studied [1079], and a new singularity is identified on

the rear part of the cylinder at the interface between

the vapor stream and the condensate film in a region

where very small velocities prevail in conjunction with

vanishing shear rate. The effects of wavy geometry,

the interfacial vapor shear and the pressure gradient

on the local condensate film thickness and the heat

transfer characteristics for mixed-convection film con-

densation with downward flowing vapors onto a

finite-size horizontal wavy plate are studied numerically

[1080]. An analytical model is presented for predicting

film condensation of vapor flowing inside a vertical mini

triangular channel [1081]. Due to surface tension effects

in the corners, the axial variation of the average heat

transfer coefficient inside an equilateral triangular chan-

nel is found to be substantially higher than that inside a

round tube of the same hydraulic diameter in the entry

region.

14.2. Global geometry

Belghazi et al. [1082] obtain data for tube bundles

with surfaces enhanced using three-dimensional geome-

try (notched fins) and compare them with results for

trapezoidal fins of different spacings. For the bundle

and for a mixture of HFC23/HFC134a, inundation of

the lowest tubes produces a significant reduction in heat

transfer coefficient. A companion study [1083] studies

film condensation for different surfaces: smooth sur-

faces, low trapezoidal fins (2-D) of varying pitch, and

specific fins (3-D, C+ tubes) for HFC134a and a mixture

of HFC134a/HFC23. Heat transfer to surfaces in pulsat-

ing condensing flows was studied [1084] for mean

Reynolds numbers of 2600–4300, with instantaneous

Reynolds numbers upto 18,000. The internal heat trans-

fer is noted to increase by up to a factor of 1.8 due to the

pulsating flow prior to the onset of condensation, and by

up to 12 times after the onset of condensation.
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14.3. EHD

Electrohydrodynamic (EHD) enhancement of heat

transfer, commonly used for dielectric media used in

refrigeration and heat pump devices, is less effective

when applied to horizontal integral-fin tubes. The mech-

anism of EHD enhancement is discussed in [1085] and a

new arrangement of the tube-electrode arrangement is

proposed. A new set of correlations for EHD-enhanced

condensation heat transfer is presented for condensation

inside and outside smooth tubes oriented horizontally or

vertically [1086]. EHD-enhanced in-tube condensation

was studied for R-134a, the zeotropic mixture R-407c,

and the near-azeotrope R-404a [1087]. All three refriger-

ants respond strongly to EHD enhancement, with R-

134a having the most enhancement and R-407c showing

the least.

14.4. Mixtures

A new model to predict the heat transfer coefficient

and pressure drop for pure or blended halogenated

refrigerants condensing in smooth tubes is presented

[1088]. Predictions are compared with data for several

refrigerants, and show excellent agreement. Another

study examines the effect of non-condensable gases on

direct-contact condensation heat transfer using the RE-

LAP5/MOD3.2 code for horizontally stratified flow

[1089]. In-tube condensation heat transfer coefficients

are presented for the zeotropic refrigerant mixture R-

22/R-142b for the case of smooth tubes [1090] and for

microfin, high-fin, and twisted-tape insert tubes [1091].

14.5. Dropwise condensation

Several papers address the mechanism of dropwise

condensation. Ganzevles [1092] use time-averaging with

instantaneous infrared temperature measurements to

quantify the thermal resistance of the condensate. They

find that mixing and convection in the condensate re-

duces the resistance by a factor of 4 compared to purely

conductive heat transfer. Kalman and Mori [1093] pres-

ent experimental data on a single vapor bubble condens-

ing in a subcooled liquid. The effects of processing

conditions of polymer film on the dropwise condensa-

tion of steam on a surface coated with the polymer are

investigated. Results indicate that depending on the sur-

face treatment and the substrate, polytetrafluoroethyl-

ene (PTFE) films can give a 15-fold difference in

condensation heat transfer enhancement over film con-

densation. Wayner [1094] performs detailed measure-

ments of the droplet nucleation, growth and transfer

of liquid from a drop to a corner meniscus. Interferom-

etry is used to measure the liquid thickness profile and

contact angle, which are related to the capillary pressure

and spreading coefficient. It is found that small interfa-
cial temperature differences of the order of 10�4 K can

generate large differences in the free energy per unit

volume, and significant affect transport processes. A

companion study [1095] examines the slow growth char-

acteristics of a condensing ethanol drop on quartz.

Interferometry is used to obtain the transient liquid pro-

file (curvature) and hence the pressure field. While the

radius of curvature increased linearly with time, the con-

tact angle was observed to remain constant at a constant

condensation heat flux. Curvature, contact angle, inter-

facial subcooling, spreading velocity and adsorption

are coupled at the contact line. Yamali and Merte

[1096] propose a theory of dropwise condensation at

large subcooling, including the effects of sweeping of

departing drops.

14.6. Surface geometry

The effect of fin geometry was studied for condensa-

tion of downward-flowing HFC134a in a staggered bun-

dle of horizontal finned tubes [1097]. In most cases, the

highest performance was obtained by the tube with a

three-dimensional structure at the tip of low fins. Kumar

et al. [1098] study the relative performance of plain

tubes, circular, splined, and partially splined circular

integral-fin tubes for film condensation of steam and

R-134a on horizontal tubes. The splined integral-fin

tubes were found to give the best performance. The ef-

fects of fin height and helix angle were documented for

three types of herringbone microfin tubes and compared

with a helical microfin tube and a smooth tube [1099]. A

study on millimeter-scale rectangular channels indicates

that existing correlations overpredict in-tube condensa-

tion heat transfer for such ducts and that liquid drawn

into the corners alters the phase distribution in the annu-

lar flow regime besides stabilizing the annular regime at

low flow velocities [1100].
15. Change of phase—melting and freezing

This is the change of phase (freezing and melting) sec-

tion of the review. It is broken into several subsections

including: melting and freezing of spheres, cylinders

and slabs; Stefan problems; ice formation/melting; melt-

ing and melt flows; powders, films, emulsions and parti-

cles in a melt; glass technology; welding; energy

storage—PCMs; casting, moulding, and extrusion;

mushy zone—dendritic growth; solidification; crystal

growth; droplets, spray and splat cooling; oceanic, geo-

logical, and astronomical phase change.

15.1. Melting and freezing of sphere, cylinders and slabs

In this subsection work was presented on phase

change in radial models. These included the effect of
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length scales on microwave thawing dynamics in two-

dimensional cylinders [1101]; heat transfer characteris-

tics of melting ice spheres under forced and mixed con-

vection [1102]; and the thermal effect of surface tension

on the inward solidification of spheres [1103].

15.2. Stefan problems, analytical solutions/special

solutions

Work in this subsection included evaluation of mov-

ing boundary problems from melting and freezing to

drying and frying of food [1104]; an exponential heat

balance integral method [1105]; and a network simula-

tion method for solving phase-change heat transfer

problems with variable thermal properties [1106].

15.3. Ice formation/melting

Work in this subsection included evaluation of ice

formation due to direct contact heat transfer and subli-

mation [1107]; thermal characteristics of ice under con-

stant heat flux and melt [1108]; ice melting by natural

convection [1109] and in water and salt solutions

[1110]; ice formation by cooling water-oil emulsion with

stirring in a vessel [1111]. Further work on scale forma-

tion of ice from electrolyte solutions on a scraped sur-

face heat exchanger plate [1112] and cool thermal

discharge by melting ice and producing chilled air

[1113] was also presented.

15.4. Melting and melt flows

This subsection of work includes a numerical study

of steady flow and temperature fields within a melt

spinning puddle [1114]; mass transfer at the interface

during laminar melt flow [1115]; shape-factor effect on

melting in an elliptic capsule [1116]; evaluation of shell

thicknesses of iron graphite nodules after laser surface

remelting [1117]; simulation of polyester high-speed

thermal channel spinning [1118]; iron flow and heat

transfer in a blast furnace hearth [1119]; transport

phenomena in laser surface alloying with distributed

species mass source [1120]; adaptive grid generation

and migration for phase-change materials processes

[1121]; molecular dynamics simulation of heat transfer

and phase change during laser material interaction

[1122]; and contact melting inside an elastic capsule

[1123].

A subset of this work evaluated melting applications

relevant to nuclear technology. These included an esti-

mate of the crust thickness on the surface of a thermally

convecting liquid–metal pool [1124]; characterization of

heat transfer processes in a melt pool convection and

vessel-creep experiment [1125]; and simulation of free-

surface melt flows with application to corium spreading

in the EPR [1126].
15.5. Powders, films, emulsions, polymers and particles

in a melt

This subsection included work on modeling of fem-

tosecond laser-induced non-equilibrium deformation in

metal films [1127]; an inverse heat transfer problem

for restoring the temperature field in a polymer melt

flow through a narrow channel [1128]; creeping flow

of a polymeric liquid passing over a transverse slot with

viscous dissipation [1129]; and opposed-flow ignition

and flame spread over melting polymers with gas flow

[1130].
15.6. Glass technology

Recent advances in mathematical modeling of flow

and heat transfer phenomena in glass furnaces was pre-

sented [1131].
15.7. Welding

This subsection included work on scaling analysis of

momentum and energy in gas tungsten arc weld pools

[1132]; resistance welding for thermoplastic composites

[1133]; resistance spot welding of aluminium with spher-

ical tip electrodes [1134]; effect of thermal convection in

the subsurface molten layer on weld thickness [1135];

laser keyhole welding issues including role of recoil pres-

sure, multiple reflections, and free surface evolution

[1136]; the influence of fluid flow phenomena on the

laser beam welding process [1137]; three-dimensional

transient finite element analysis of heat transfer in stain-

less steel (304) pulsed GTA weldments [1138]; impor-

tance of Marangoni convection in laser full-penetration

welding [1139]; and three-dimensional modelling of heat

transfer and fluid flow in laser full-penetration welding

[1140].
15.8. Energy storage—phase change materials (PCM)

Work in this area included evaluation of melting pro-

cesses in PCM in the presence of a magnetic field in low-

gravity environment [1141]; evaluation of capric and

lauric acid mixture as latent heat energy storage for a

cooling system [1142]; thermal and heat transfer charac-

teristics of lauric acid in a latent heat energy storage sys-

tem [1143]; investigation of carbon-fiber brushes on

conductive heat transfer in phase change materials

[1144]; crystal growth rate in disodium hydrogenphos-

phate dodecahydrate [1145]; producing chilled air in

cool thermal discharge systems with air flowing over

an ice surface by complete removal of melt [1146]; effect

of ultrasonic vibrations on phase-change heat transfer

[1147]; and analysis of solid–liquid phase change heat

transfer enhancement [1148].
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15.9. Casting, moulding and extrusion

Work in the casting area included evaluation of mac-

roexothermic phenomena during casting [1149]; control

of heat transfer and growth uniformity of solidifying

copper shells [1150]; mould evaluation for high speed

continuous casting of steel billets [1151]; microstructure

simulation of aluminum alloy using parallel computing

technique [1152]; particle distribution in cast metal ma-

trix composites [1153]; evaluation of fluid flow, heat

transfer and solidification in the bending-type square

billet continuous casting process [1154]; numerical simu-

lation of squeeze cast magnesium alloy AZ91D [1155];

texture enhancement by inoculation during casting of

ferritic stainless steel strip [1156]; outlet positions and

turbulence mixing in a single and multi strand tundish

[1157]; effect of outlet positions, pouring box, and

shroud immersion depth on mixing in a caster tundish

[1158]; and analysis of coupled turbulent flow and solid-

ification in the wedge-shaped pool with different nozzles

during twin-roll strip casting [1159].

Additional work on interfacial heat transfer resis-

tances and characterization of strip microstructures

for Al–Mg alloys cast on a single belt casting simulator

[1160]; evaluation of the film casting process [1161]; gap

distance effects on the cooling behavior and the micro-

structure of indirect squeeze cast and gravity die cast

5083 wrought Al alloy [1162]; porosity formation in di-

rect chill cast aluminum–magnesium alloys [1163]; eval-

uation of the effect of vacuum on mold filling in the

magnesium EPC process [1164]; evaluation of molten

flux layer thickness profiles in compact strip process

moulds for continuous thin slab casting [1165]; model-

ling of thermal stratification phenomena in steel ladles

[1166]; effect of vibration on casting surface finish

[1167]; fluid flow and heat transfer in twin-roll casting

of aluminum alloys [1168]; filling and solidification of

permanent mold castings [1169]; cooling rate evaluation

for bulk amorphous alloys from eutectic microstruc-

tures in casting processes [1170]; mass and heat transfer

during feeding of castings [1171]; chill casting of alumi-

num alloys for industrial scale ingots [1172]; melt flow,

heat transfer and non-equilibrium solidification in pla-

nar flow casting [1173]; mold filling and solidification

processes under pressure [1174]; and prediction of thick-

ness of mould flux film in continuous casting mould

[1175].

In addition, modeling of heat transfer and deforma-

tion in film blowing process [1176] as well as simulation

of non-isothermal melt densification of polyethylene in

rotational molding [1177] were presented.

15.10. Mushy zone—dendritic growth

Work in this area includes average momentum equa-

tion for interdendritic flow in a solidifying columnar
mushy zone [1178]; adaptive phase field simulation of

dendritic growth in a forced flow at low supercool-

ing [1179]; concentration fields in the solidification pro-

cessing of metal matrix composites [1180]; numerical

simulation of initial microstructure evolution of Fe–C

alloys using a phase-field model [1181]; two-phase

mushy zone during freeze coating on a continuous mov-

ing plate [1182]; sharp-interface simulation of dendritic

solidification of solutions [1183,1184]; mushy zone equi-

librium solidification of a semitransparent layer subject

to radiative and convective cooling [1185]; and a fixed-

grid finite element based enthalpy formulation for gen-

eralized phase change problems with mushy regions

[1186].

15.11. Solidification

Work in this subsection included scaling analysis of

momentum, heat, and mass transfer in binary alloy

solidification problems [1187]; solidification and resid-

ual stress in the GMAW process for AISI 304 stainless

steel [1188]; a control volume method for solidification

modelling with mass transport [1189] and domains sub-

jected to viscoplastic deformation [1190]; computa-

tional model for solutal convection during directional

solidification [1191]; a numerical study of solidification

in the presence of a free surface under microgravity

conditions [1192]; a macro/micro model for magnetic

stirring and microstructure formation during solidifica-

tion [1193]; microsolidification process in multicompo-

nent system [1194]; a numerical study of anisotropy

and convection during solidification [1195]; linear sta-

bility analysis of the solidification of a supercooled li-

quid in a half-space [1196]; boundary element model

of microsegregation during volumetric solidification of

a binary alloy [1197]; evaluation of the heat transfer

coefficient during the solidification of aluminum

[1198] and during solidification of cast iron in sand

mould [1199]; heat transfer at the metal/substrate inter-

face during solidification of Pb–Sn solder alloys [1200];

and evolution of convection pattern during the solidifi-

cation process of a binary mixture: effect of initial sol-

utal concentration [1201].

Additional work included work on an inverse con-

vection–diffusion problem of estimating boundary veloc-

ity [1202]; simulation of solidification processes in

enclosures [1203]; solidified layer growth and decay

characteristics during freeze coating of binary substance

[1204]; numerical evaluation of heat transfer, fluid flow,

and stress analysis in phase-change problems [1205]; a

computational study of binary alloy solidification in

the MEPHISTO experiment [1206]; an analytical self-

consistent determination of a bubble with a deformed

cap trapped in solid during solidification [1207]; multi-

scale computational heat transfer with moving solidifica-

tion boundaries [1208].
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15.12. Crystal growth

Crystal growth work includes both general work as

well as more specialized Bridgman, Czochralksi and epi-

taxial studies. The general work included evaluation of

optical heating for controlled crystal growth [1209];

experimental modeling of mass crystallization processes

in the volume of a flat magma chamber [1210]; a method

to study polymer crystallization during processing [1211];

magnetic field suppression of melt flow in crystal growth

[1212]; direct numerical simulation of solid-layer crystal-

lization from binary melt [1213]; effects of crystal growth

rate and heat and mass transfer on solute distribution

[1214]; identification of furnace thermal characteristics

from resistance measurements [1215]; development of a

method to control directed semiconductor crystallization

in space [1216]; transverse thermal effects in directional

solidification [1217]; convective effects during diffusivity

measurements in liquids with an applied magnetic field

[1218]; an estimation of purity and yield in purification

of crystalline layers by sweating operations [1219]; exper-

imental verification of the numerical model for a CaF2
crystal growth process [1220]; a global thermal analysis

of multizone resistance furnaces with specular and diffuse

samples [1221]; analysis of secondary radiation (multiple

reflections) in monoellipsoidal mirror furnaces [1222];

and solutocapillary convection in the float-zone process

with a strong magnetic field [1223].

Bridgman crystal growth work included evaluation of

G-jitter effects during directional solidification [1224] and

within magnetic fields [1225]; axial and radial segregation

due to the thermo-convection in the semiconductor crys-

tals grown in a lowgravity environment [1226]; evaluation

of factors affecting isotherm shape of semi-transparent

BaF2 crystals [1227]; investigation of the Bridgman

growth of a transparent material [1228]; solidification

thermal parameters affecting the columnar-to-equiaxed

transition [1229]; temperature oscillations on the interface

velocity [1230]; evaluation of growth of semiconductor

crystals under microgravity [1231]; and spoke pattern

evaluation in Bridgman top seeding convection [1232].

Work on Czochralski method of crystal growth in-

cludes global analysis of heat transfer in growing BGO

crystals (Bi4Ge3O12) [1233]; heat and oxygen transfer

in silicon melt in an electromagnetic Czochralski system

[1234]; radial distribution of temperature gradients in

growing CZ–Si crystals and its application to the predic-

tion of microdefect distribution [1235]; effect of internal

radiation on thermal stress fields in CZ oxide crystals

[1236]; global simulation of a silicon Czochralski furnace

[1237]; dopant segregation during liquid-encapsulated

Czochralski crystal growth in a steady axial magnetic

field [1238]; coupling of conductive, convective and radi-

ative heat transfer in Czochralski crystal growth process

[1239]; a volume radiation heat transfer model for Czo-

chralski crystal growth processes [1240]; computer simu-
lation of point-defect fields and microdefect patterns in

Czochralski-grown Si crystals [1241]; buoyant-thermo-

capillary and pure thermocapillary convective instabili-

ties in Czochralski systems [1242]; and magnetic

stabilization of the buoyant convection in the liquid-

encapsulated Czochralski process [1243].

Epitaxial crystal growth work included evaluation of

applied magnetic field on flow structures in liquid phase

electroepitaxy [1244] and epitaxial growth of 4H SiC in a

vertical hot-wall CVD reactor [1245].

15.13. Droplets, spray and splat cooling

Work in this subsection included metal droplet depo-

sition on non-flat surfaces: effect of substratemorphology

[1246]; presolidification heat transfer and fluid dynamics

in molten microdroplet deposition [1247]; transport and

solidification phenomena in molten microdroplet pileup

[1248]; single fluid atomization through the application

of impulses to amelt [1249]; multiphase flowwith imping-

ing droplets and airstream interaction at a moving gas/

solid interface [1250]; modeling of droplet impact and

solidification [1251]; splat shapes in a thermal spray coat-

ing process [1252]; splashing of molten tin droplets on a

rough steel surface [1253]; evaluation of spray cooling

for the continuous casting of multi-component steel

[1254]; interfacial heat transfer during cooling and solid-

ification of molten metal droplets impacting on a metallic

substrate [1255]; heat transfer analysis of impulse atom-

ization [1256]; solidification study of aluminum alloys

using impulse atomization [1257]; solidification modeling

of plasma sprayed TBC [1258]; and an integrated model

for interaction between melt flow and non-equilibrium

solidification in thermal spraying [1259].

15.14. Oceanic, geological, and astronomical phase

change

This last subsection work included effects of repeti-

tive emplacement of basaltic intrusions on thermal evo-

lution and melt generation in the crust [1260]; modeling

of crustal scale convection and partial melting beneath

the Altiplano-Puna plateau [1261]; analysis of anatectic

migmatites from the roof of an ocean ridge magma

chamber [1262]; study of thermal conditions in the

THM growth of HgTe [1263]; impact hot spots on the

cold surface of the early Earth [1264]; and some thermal

constraints on crustal assimilation during fractionation

of hydrous, mantle-derived magmas [1265]; and water/

magma interaction [1266].
16. Radiation

The papers below are divided into subcategories that

focus on the different impacts of radiation. Most of the
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papers report the results of modeling studies. Papers

describing the development of new numerical methods

themselves are reviewed in the numerical methods sec-

tion under the subcategory radiation.

16.1. Radiative transfer calculations and influence of

the geometry

Several methods have been used to study radiative

transfer in one- or multi-dimensional systems. The dis-

crete ordinate method (DOM) is popular among many

authors. Guo and Kumar [1267] model the transient heat

transfer in three dimensions using DOM. Li et al. [1268]

introduce a new spherical surface symmetrical equal

dividing scheme. The reduction of false scattering effects

is discussed in [1269,1270]. Coelho [1271] also studies

bounded high-order resolution schemes for the DOM.

Dualmode heat transfer in cylinders is discussed in [1272].

Liu et al. use a discrete transfer method to investigate

three-dimensional surface radiation [1273]. Inverse radi-

ation analysis is applied in [1274,1275]. Garber and Tan-

german model crystal growth as radiative transfer in

closed axisymmetric chambers [1276]. An accelerated

method to solve the P-1 equation is presented in

[1277]. The cooling of glass is modeled in [1278] as a sim-

plified diffusion type process.

Mulet et al. [1279] model radiative transfer between

two semi-infinite bodies at a subwavelength scale. Reso-

nant surface waves may enhance the heat transfer by or-

ders of magnitude.

16.2. Radiation and combustion

Combustion problems involve radiative heat transfer

as well as participating media, and other heat transfer

modes.

A number of papers consider radiation in flames.

Oxygen-enhanced flames are studied in [1280,1281].

Fourier transform infrared spectroscopy is used to study

a diffusion flame in [1282]. The effects of gas and soot

radiation on flames are considered in [1283–1285]. Sha-

mim studies the effect of the Lewis number on radiative

extinction [1286].

Small gas-fueled furnaces are modeled in [1287], flu-

idized bed combustors in [1288]. Reddy and Basu inves-

tigate the effect of CO2 on radiative transfer in fluidized

bed combustors [1289]. The radiative heat transfer re-

lated to fires and its influence on fire spread is discussed

in [1290–1292].

The energy concentration in combustion waves is the

topic of study [1293]. The heat and mass transfer in so-

dium pool combustion are modeled in [1294].

16.3. Radiation and small particles

A number of publications consider radiative heat

transfer in systems involving small particles.
Liu et al. [1295] study transient radiation–conduction

in semitransparent particles and the emissive power

of particles with non-uniform temperature [1296].

Two-phase gas-particle media are considered in two-

dimensional enclosures [1297], and their effect on the

propagation of acoustic waves is studied in [1298]. Cons-

alvi et al. [1299] discuss an averaging procedure for radi-

ative transfer from particulate media, while Raun et al.

[1300] propose a Monte Carlo approach. The effect of

soot aggregation on the radiative properties in the infra-

red is studied in [1301]. The influence of radiation on the

oxidation of small metal particles is investigated in

[1302]. The propagation of a laser-driven shock wave

in a gas-particulate medium is discussed in [1303]. Radi-

ation from solid carbon particles is also found as impor-

tant in the plume of an Atlas rocket [1304].

16.4. Participating media

Papers in this category focus on emission and absorp-

tion properties, as well as scattering properties of the

participating medium.

Penner�s article [1305] presents an overview of the

author�s 50 years of research on radiant heat transfer
and the associated studies in quantitative spectroscopy.

Several papers deal with the efficient description of

radiative transfer in participating gaseous media. An

exponential wide band model for transfer in one- and

two-dimensional enclosures containing CO2 and H2O

is presented in [1306]. A full-spectrum correlated-k dis-

tribution is applied to one-dimensional transfer in

CO2–N2 and two-dimensional transfer in CO2–H2O–

N2 mixtures [1307]. The correlated-k distribution, spec-

tral-line based weighted sum of gray gases, and weighted

sum of gray gases method are compared for radiation

from non-gray gases in three-dimensional enclosures

[1308]. Goutiere et al. [1309] draw attention to the hy-

brid correlated-k/statistical narrow band method with

band regrouping strategies. A new model for smooth

absorption coefficients is discussed in [1310]. Reciprocal

and forward Monte Carlo methods with a correlated-k

approach are compared in [1311]. The full spectrum cor-

related-k distribution is applied to non-gray radiation of

combustion gases in [1312]. A statistical narrow band

model and ray-tracing is used to model radiation in

cubic enclosures with real gases [1313]. Heragu et al.

[1314] model the emission from engine exhaust and its

incidence on a sensor using a narrow band model. The

inverse radiation problem for a radiant cooler is solved

in [1315] to estimate the heat-transfer coefficient in par-

ticipating media.

Semitransparent media featuring absorption and

emission and sometimes spatially non-uniform refrac-

tion are studied in several papers. Graded index semi-

transparent slabs with gray boundaries are considered

in [1316] and sinusoidally varying indices of refraction
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are studied in [1317]. Infinite semitransparent cylinders

are discussed in [1318]. The internal distribution of radi-

ation absorption in one-dimensional media is investi-

gated in [1319]. Two-dimensional semitransparent

media are studied in [1320].

Isotropic scattering is important in several participat-

ing media. Non-Fourier conduction in the presence of

isotropic scattering is studied in [1321]. Three-layer com-

posites are studied in [1322,1323], semitransparent com-

posite layers in [1324,1325]. Parallel ducts are modeled as

porous medium in [1326]. A collapsed dimension method

is used to study absorbing–emitting–scattering media in-

side one-dimensional gray enclosures [1327], two-dimen-

sional media are discussed in [1328], three-dimensional

media in [1329]. Sacadura and Baillis [1330] investigate

dispersed media such as fibers, foams, and pigmented

coatings. An equivalent Mueller matrix for a plane med-

ium is derived in [1331]. Ref. [1332] investigates the scat-

tering from polydisperse diesel droplets.

Several papers also deal with the influence of aniso-

tropic scattering. Altac and coworkers apply a synthetic

kernel method both to isotropic [1333,1334] and aniso-

tropic scattering problems [1335,1336]. The discrete

ordinate method in anisotropic scattering problems is

studied in [1337,1338]. Absorption, emission, and aniso-

tropic scattering in media in complex enclosures are dis-

cussed in [1339]. A zone method for radiation in

anisotropically scattering media bounded by anisotropi-

cally reflecting walls is described in [1340]. A collapsed

dimensions model is used to describe a one-dimensional

participating medium in [1341]. Stochastic radiative

transfer with isotropic and anisotropic scattering is also

studied in [1342].

Various papers focus on numerical approaches to

model participating media. A Monte Carlo model to

predict the propagation of a collimated beam is de-

scribed in [1343]. Ref. [1344] discusses wavelets and the

discrete ordinate method for radiation in two-dimen-

sional rectangular enclosures with non-gray media, and

a radiation element method by ray emission model is

introduced in [1345] for three-dimensional media and

enclosures.

16.5. Combined heat transfer

Papers in this subcategory consider the combined ef-

fect of radiation with conduction and/or convection. An

implicit finite difference method coupled to a ray tracing

method is used to model conduction and radiation in

semitransparent media [1346]. Transient conduction

and radiation with variable thermal conductivity are dis-

cussed in [1347]. Spherical turbid media with anisotropic

scattering are considered in [1348]. Conduction and

radiation heat transfer in fibrous media are studied in

[1349,1350]. Combined conduction and radiation also

play a role in the rapid thermal processing of plasma dis-
play panels [1351]. Both effects also dominate the con-

ventional, microwave, and combined heating of ovens

[1352]. An uncommon paper in the context of this review

deals with the radiative and conductive transfer in plan-

etary regoliths of the Moon and Mercury [1353].

Combined convection and radiation are discussed in

[1354] with respect to the flow of an incompressible vis-

cous fluid past amoving vertical cylinder. Free convection

in a square duct with specular reflection by an absorbing–

emitting medium is studied in [1355]. Convection and

radiation also play a role in the chemical vapor deposition

of silicon [1356]. Both processes also determine the nano-

scale heating of a sample with a probe [1357].

16.6. Intensely irradiated materials

Several papers deal with materials that are subjected

to intense radiation. Ref. [1358] discusses time-resolved

laser-induced incandescence as a method for sizing mi-

cronic carbonaceous particles. The influence of multi-

photon absorption of 193 nm high-power, short-pulse

excimer laser radiation on the heating of glass is dis-

cussed in [1359]. Ultrafast laser heating of metal films

can be affected by microvoids [1360].

16.7. Experimental methods and systems

Only few studies of experimental methods and systems

are reported this year. A multi-wavelength pyrometer–

photometer has been developed to determine the temper-

ature and concentrations of combustion products on the

basis of the infrared self-radiation [1361]. Ref. [1362] de-

scribes a monochromatic-reference method to obtain 3D

temperature images of large-scale furnaces. Extensive

experimental studies of the heat transfer processes in an

oven-like enclosure are reported in [1363]. A Monte

Carlo model to facilitate radiometric temperature mea-

surements in silicon wafer rapid thermal processing fur-

naces is discussed in [1364]. Air radiation measurements

behind a strong shock wave are reported in [1365].
17. Numerical methods

One of the breakthroughs of the last century is the

ability to simulate physical processes on a computer.

The simulation of heat transfer, fluid flow, and related

processes is made possible by numerical solution of the

governing partial differential equations. The numerical

simulation is used in academic research and in industrial

applications. In this review, the papers that mainly focus

on the application of numerical methods to particular

problems are reviewed in the appropriate application

category. The papers that primarily deal with the devel-

opment of a numerical technique are included in this

section.
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17.1. Heat conduction

A Green�s function approach is presented for steady-
state heat conduction in a rectangular parallelepiped

[1366]. An algorithm is described to solve the sensitivity

equations in transient heat conduction [1367]. A posteri-

ori error estimate technique is constructed for heat con-

duction on unstructured triangular meshes; an equal

distribution of error on all triangles leads to an adaptive

mesh refinement procedure [1368]. The method of sec-

ond moments is used for computational heat transfer

[1369]. A simple procedure is described for thermal re-

sponse factors and conduction transfer functions

[1370]. A spectral method is developed for conduction

through a multilayer multiblock case [1371]. A flux-split-

ting algorithm is used for non-Fourier heat conduction

[1372].

The transfer matrix method is employed for the

solution of periodic heating problems [1373]. An

approximate analytic method is described for dual-

phase-lagging heat transport equations [1374]. A two-

temperature model is presented for ultrashort laser pulse

interaction with a metal film [1375]. An operator-

splitting, radial-basis-function method is developed for

the solution of transient Poisson problems [1376].

A general method is presented for the direct determi-

nation of the shape of a body that achieves specified de-

sign criteria; although the method is general, it is

demonstrated for heat conduction problems [1377].

17.2. Inverse problems

A maximum entropy method is used for the solution

of inverse heat conduction [1378]. Thermal contact

resistance between rough surfaces is determined by the

application of inverse analysis [1379]. Thermophysical

properties of super-hard synthetic materials are derived

by employing the inverse heat conduction approach

[1380]. Singular value decomposition and model reduc-

tion are used for inverse heat conduction problems with

temperature data that contain significant noise [1381]. A

generalized optimum dynamic filtration method is pre-

sented for solving inverse heat transfer problems

[1382]. An inverse solution technique is used for estimat-

ing interface conduction between periodically contacting

surfaces [1383]. A combination of the Laplace transform

and a finite-difference method is proposed for the predic-

tion of boundary conditions in an inverse heat conduc-

tion problem [1384]. An inverse technique is based on

the identification of multiple heat sources [1385].

17.3. Fluid flow

The progress and challenges in high-performance

computing in computational fluid dynamics are re-

viewed; the main challenge is identified as the under-
standing of turbulence and its effect on engineering

applications [1386]. A general continuous sensitivity for-

mulation is presented for complex flows [1387]. The

Richardson extrapolation technique is evaluated for

two-dimensional laminar and turbulent flow problems;

the technique is shown to be unsatisfactory for the prob-

lems investigated [1388]. A post-processing tool is devel-

oped for the verification of finite-volume computations

[1389]. A meshless formulation is presented for three-

dimensional viscous flow [1390].

A parallel algorithm using loosely coupled computers

is described for the efficient solution of the pressure-cor-

rection equation for incompressible flows [1391]. A uni-

fied parallel numerical method is presented for flows of

all regimes including incompressible and supersonic

flows [1392].

17.4. Pressure-correction techniques

Several flow calculation methods originate from the

SIMPLE procedure and employ a pressure-correction

equation derived from the mass conservation principle.

A comparative evaluation is made of seven methods

based on the pressure-correction equation for incom-

pressible multiphase flows [1393]. The special features

of pressure-correction equations and their effect on the

overall flow solution are systematically investigated

[1394]. A dual-dissipation scheme is proposed for the

treatment of the pressure–velocity coupling in non-

orthogonal colocated grids [1395]. The Nonstaggered

APPLE algorithm is described for incompressible flows

in curvilinear coordinates [1396]. Different practices

are discussed for the interpolation of velocity compo-

nents to obtain the interface velocity in a colocated grid

system [1397]. A pressure-based finite-volume method is

formulated for unstructured grids and applied to lami-

nar reacting flows [1398].

17.5. Additional flow solution techniques

A calculation procedure is described for complex

time-dependent geometries; it employs a moving mesh

and applies the space conservation law [1399]. A local

block refinement procedure is used in conjunction with

a multigrid flow solver [1400]. An equal-order finite-ele-

ment method is developed for natural convection in

complex domains [1401]. A robust scheme based on

the artificial compressibility concept is presented for vis-

cous incompressible flow [1402]. An auto-adaptive finite-

element method is described for the Navier–Stokes

equations [1403].

17.6. Free surface flows

A new method is presented for the treatment of the

free surface between a non-spherical bubble and the sur-
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rounding liquid [1404]. The volume-of-fluid method is

applied to the buoyancy-driven flow of bubbles in a

liquid [1405]. A finite-element method is adapted to

free-surface flows with surface tension [1406]. A direct-

predictor method is proposed for the prediction of a

steady terminal shape of a bubble rising through quies-

cent liquid [1407]. Heat and mass transfer at the surface

of a gas bubble is calculated by a numerical procedure

[1408]. The free-surface flow of a liquid in a printing pro-

cess is simulated by a problem-specific meshing strategy

[1409].

17.7. Turbulent flow

Whereas the ‘‘k-epsilon’’ turbulence model is widely

used, the specification of epsilon at an inlet boundary

is often arbitrary. Results from direct numerical simula-

tion (DNS) of turbulence are used to determine accurate

values of epsilon and a procedure for the specification of

epsilon is proposed [1410]. Reynolds averaged predic-

tions of turbulent flow in a turbine passage are presented

to illustrate the shortcomings of common turbulence

models; certain constraints are proposed for improving

the predictions [1411]. Exact renormalization is used to

provide an estimate of turbulent eddy diffusivity

[1412]. Scalar turbulent dispersion from a line heat

source is studied for moderate and high Prandtl number

fluids [1413].

17.8. Other studies

A spectral algorithm is used to calculate flows in

microchannels under the influence of pressure gradients

and electro-osmotic forces [1414]. An exponential func-

tion is embedded in a two-boundary grid generation

technique for turbulent heat transfer in a piston-cylinder

system [1415]. A number of features such as turbulent

spray computation, probability density function,

unstructured grids, and parallel computing are com-

bined to predict the fluid dynamics of sprays with

chemistry/turbulence interaction [1416]. An efficient

algorithm is presented for locating particles within arbi-

trary unstructured grids [1417]. A moving mesh is used

for the simulation of helium expansion and thermal–

hydraulic behavior in superconducting magnets

[1418,1419]. A posteriori adaptive mesh refinement

method is applied to a three-dimensional convection-

diffusion problem [1420].
18. Properties

Considerable effort has been directed toward the

investigation of thermal conductivity and diffusivity val-

ues for composites, sub-micro–nano meter systems and

other specialized applications.
18.1. Thermal conductivity and diffusivity

Experimental works include photoacoustic technique

studies of buried multilayered systems, curing tempera-

ture variation of thick glass, epoxy composite laminates

and imagining of micrometer and sub-micrometer size

surface variations using a scanning thermal microscope

(SThM) [1421–1423]. Other papers report results for

amorphous silicon thin films, silicon and germanium

properties measured with the hot-wire method, and ther-

mal property variation of aluminosilicate fiber radius

[1424–1426]. A series of papers include results for

laser-sprayed coatings, effect of crystal order on proper-

ties, liquid aromatic hydrocarbon thermal properties,

phenolic foam insulation, compressed wood, and

ground beef patties under infrared radiation [1427–

1433].

Analytical works feature the role of structure influ-

ence on thermal properties: A packing algorithm for

complex shapes, interface and strain effects, nanowire

size, network structure for epoxy resin–carbon black

composites as well as EPOM rubber Ti ceramic compos-

ites. [1434–1438]. Yet other papers consider thin, solid

non-conducting layers, glass foams, bidispersed porous

media and the cubic cell soil model [1439–1442].

18.2. Heat capacity

Investigations in this and related properties embrace

a variety of systems and modes of study. Thus thermal

characteristics of materials with a nanometer scale are

reported for a narrow wire as well as the associated

interface. Nanophase separation was studied in diblock

and triblock copolymers using the heat capacity. Using

a double twin micro calorimeter sorption isotherms

and enthalpies are determined for vapors or water, eth-

anol and other liquids. Flow densimetry and flow micro-

calorimetry are employed to study the effect of

electrolytes, surfactants and alcohols on polystyrene la-

texes [1443–1446]. Other papers focus on micelle forma-

tion by surfactants, Henry�s law constants of chlorinated
ethylenes in alcohol solution, temperature dependence

of gas–liquid chromatographic retention and the heat

capacity of an ideal gas along an elliptical PV cycle

[1447–1450].

18.3. Miscellaneous systems and investigative procedures

Calorimetric measurements are reported for batch

cultures of Bacillus Sphaericus 1593M, characterizing

resin cure in thermosetting composities, and a thermal

gravimetrical apparatus used to determine solid-side

mass diffusivity for a water vapor-silica gel system

[1451–1454]. Radiative properties (spectral) are identified

for polyurethane foam and Planck mean absorption

coefficients for HBr, HCl and HF and shock experiments
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with porous Ni samples explore near critical point

behavior [1455–1458]. For bi-dispersed porous media a

fractal permeability model is developed, cellular metal

structures characterized using ultrasonics, a new method

of melt spinning using grooved and ceramic chill rolls to

manufacture magnetic substances is described and the

possibility of managing soil physical properties for envi-

ronmental protection presented [1459–1462].
19. Heat exchangers and thermosyphons

Applications: The extraordinary range of heat trans-

fer applications is indicated by a group of papers which

treats: rotating heat exchangers, commercial blood oxy-

generators, thermoacoustic and thermoelectric devices,

space craft radiators, pressurized bubble columns, and

soil and deep bore heat exchangers [1463–1471].

19.1. Heat exchangers

Design modeling, optimization, and performance

are emphasized in studies focused on: a parallel flow

exchanger, exchanger response to data uncertainties,

counter current flow with variable properties, Nusselt

number predictions for chaotic pipe flow, laminar

counter flow concentric exchangers, active cavity effect

on fluid dynamic behavior in exchangers, and the ther-

modynamic significance of local volume averaged tem-

perature [1472–1479]. Other investigations continue to

examine such matters: finite element solution of conju-

gate heat transfer, a hyperbolic dispersion model, the

uniformity principle of temperature difference field,

numerical simulations of thermal control, the construc-

tal route to the design of a two-stream exchanger with

maximum heat transfer per unit volume and a new

steady-state formulation of temperatures along a dou-

ble-pipe exchanger in counter flow when mass flow rate

undergoes a step change [1480–1485]. Also considered

are: identifying the quench front temperature in an infi-

nite slab when rewetted, the use of a filtering technique

to solve the problem of random uncertainties in

temperature measurements, two-fluid porous media

method for transient two-phase flow in complex geom-

etries, and forced convection heat transfer in tube

banks in cross flow [1486–1489]. Experimental works

embrace a variety of systems and operating conditions:

brazed aluminum exchangers under dehumidifying cir-

cumstances, overall heat transfer for combustion cases

in elliptical tube exchangers, effect of layer depth on

mixing in a diffusive two-layer system, steam condensa-

tion in a rectangular, horizontal channel, and radio tra-

cer investigation of inadequate reactor heat transfer

[1490–1494].

Plate heat changers are studied from a number of

viewpoints: design of multi-stream types, heat transfer
and pressure drop when used with ice slurries, numerical

analysis under forced convection, screening for optimal

configuration selection, effect of flow distribution to

channels on performance, an algorithm for steady-state

simulation, rating calculation of effectiveness from exist-

ing performance data and tests of air–water flow and

heat transfer [1495–1502].

Additional efforts consider aspects of heat exchanger

networks using different exchanger types, simulation,

retrofit, behavior and general solution [1503–1507]. Flat

tube exchangers, packed bed and fluidized exchangers

with solid particle circulation and recycle effects are also

taken up [1508–1515].

19.2. Augmentation and enhancement of heat transfer

Techniques for facilitating heat transfer continue to

be reported in impressive number. The extension of heat

transfer surface by fins is especially popular. A fin-tube

exchanger is investigated using liquid crystal techniques,

a plate finned tube exchanger by infrared thermography,

measurements of performance are reported for a tube

finned surface and annular fins of varying profile with

variable heat transfer coefficient. Wavy finned surfaces

employed with humid air flows are studied and the use

of hydrophilic coating reported. Further papers report:

performance of extruded-serrated and extruded-finned

tube bundles, film condensation on horizontal low

finned tubes, transient conduction in a fin-wall assembly,

and the characteristics of a multi-pass heat exchanger

similar to that used to melt snow [1516–1526]. Addi-

tional papers discuss circular tubes with internal longitu-

dinal fins with tapered lateral profiles and aspects of

multi-louvered fin geometry [1527–1530].

A significant effort has been directed toward vortex

generation as a method of enhancing heat transfer: in

a channel with built in oval tube, in a plain-fin-and-tube

exchanger, for fin-tube bundles, inline fin-tube configu-

ration, and flat tube bank with four vortex generators

per tube [1531–1537]. Geometrical features also can

affect heat transfer as found with triangular capillary

grooves, threaded surface in vertical narrow channels,

spiral wound membrane modules, wire-pm-tube exchang-

ers, herringbone wavy fin-and-tube devices, corrugated

wall exchangers, combination of spirally corrugated

tubes with twisted tape, rounded cross wavy ducts, ser-

pentine flow in baffled flow in parallel plate cell chan-

nels, and the snail entrance in a concentric exchanger

[1538–1547]. Compact exchangers are optimized

through flow visualization, boiling enhanced in a com-

pact tube bundle, and a novel groove-shaped screen-

wick miniature heat pipe described, and the Leveque

equation generalized for use in cross corrugated chan-

nels of plat heat exchanger and other systems [1548–

1551]. Heat transfer enhancement techniques can also

play a role in energy conservation [1552,1553].
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19.3. Compact, miniature, mini and micro exchangers

The miniaturization of heat transfer devices continues

to spread to a growing number of applications: electron-

ics cooling, micro heat pipes, wire-bonded micro heat-

pipe arrays, microturbine recuperators, evaporation

and boiling in microfin tubes, modelling of microchannel

flows pressure drop in miniature helical channels, and

microscale temperature measurements at an evaporating

liquid surface [1554–1563]. For compact exchangers their

importance in spreading heat pump use is studied, they

begin to replace shell-an-tube exchangers in exchanger

networks, and using minichannel flow passages appear

as compact evaporators. Allowance is made for fouling

in design of compact exchangers and reflux condensation

in small scale passages reported [1564–1568].

19.4. Evaporators and condensers

Cooling towers are the subject of a number of papers:

Evaporative cooling of water by natural draft, thermal-

hydraulic performance for such devices, the use of ther-

mal-fluid dynamic efficiency in towers and the reverse

use of towers in sub-tropical regions for service hot

water [1569–1572]. Other works to consider: spray col-

umn direct contact exchangers, the influence of thermal

irreversibilities on diabatic distillation column perfor-

mance, capillary-assisted water evaporators for vapor-

absorption systems, modelling climbing-falling-film

plate evaporators, evaporation-combustion affects in

porous regenerator, investigation of the evaporating film

of a molecular evaporator, and two-phase thermal anal-

ysis of evaporators [1573–1579]. Brazed aluminum evap-

orators are analyzed for the effect of humidity on

performance [1580,1581].

Design and modeling of condensers consider the

influence of aerosol deposition on horizontal finned

tubes in cross-flow and the hot-wall condensers of

domestic refrigerators [1582,1583].

19.5. Fouling

A group of papers describe probes and schemes for

measuring and monitoring and mitigating fouling. A

probe is developed to monitor gas-side fouling in cross

flow and fouling intensity in boilers; CaCO3 fouling is

studied with a microscopic imaging technique; electronic

anti-fouling is perfected to mitigate mineral fouling in

enhanced-tube exchangers; and polyacrylic acid used

as an antiscaling agent [1584–1589]. Modelling and de-

sign assess fouling and incorporate such assessments

into the exchanger design [1590–1593]. Further data on

fouling is provided for internal helical-rib roughness

tubes in a cooling water tower, fouling layer formation

on an exchanger exposed to warm, humid, particulate-

laden air, and French experience with fouling in steam
generator tubes [1594–1596]. One study suggests that

while fouling is to be avoided and mitigated in almost

all instances, fouled steam generator tubes showed better

boiling heat transfer performance than new, chemically

cleaned tubes [1597].

19.6. Thermosyphons/heat pipes

This device continues to find application across a

wide range of heat transfer problems from space radia-

tors to the cooling of buildings. Miniature heat pipes

of improved performance cool PC notebooks and high

heat flux electronic components. Toroidal thermosy-

phons widely used in solar water systems, nuclear reac-

tors and geothermal energy system, are the focus of

several works [1598–1604]. Two-phase closed thermosy-

phons are modeled for electronics cooling, applied to

water-saturated soil conditions and a boiling heat trans-

fer system, and improved to perform low temperature

heat transfer [1605–1608]. Further works study wickless

network heat pipes in high heat flux spreading applica-

tions, evaporative three finger glass designs, and the

enhancement of heat transfer in an air preheater using

the binary working fluid triethylene glycol (TEG)–water

mixture [1609–1611]. Oscillating and pulsating heat

pipes are modeled, and experimentally investigated

[1612–1615].

19.7. Power and reversed cycles

The influence of heat exchanger performance on

power plant efficiency is reported in several papers.

Fore-casting thermal performance for a plant using

sea-water cooling subject to tidal effects, optimization

procedure for maximizing total plant efficiency of the

humid air turbine (HAT) cycle, thermodynamic perfor-

mance for a magnetohydrodynamic (MHD) power plant

with variable temperature heat reservoirs and the effect

of heat transfer on thermoelectric generators reflect the

scope of efforts in this area [1616–1621].

Reversed cycle papers embrace diverse interests: de-

sign of integrated refrigeration systems and absorption

machines, and a variety of factors for heat pump based

systems (novel mechanical ventilation heat recovery,

CO2 air conditioning, thermoeconomic considerations

in optimum allocation of heat transfer, performance of

R-22 alternative mixtures [1622–1627]. Other papers

simulate heat transfer in a solid absorption refrigeration

system, optimize a two-stage ejector plant, model refrig-

erant flow through capillary tube exchangers, simulate

vapor-compression liquid chillers and evaluate a win-

dow room air conditioner with microchannel condensers

[1628–1633]. A series of papers report on the perfor-

mance of various refrigerants: R407C substituted for

R22 in shell and tube exchanger, isobutene (R600a) as

domestic refrigerant, condenser performance for R-22
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and R-707C, ozone friendly R-410A in a vertical plate

exchanger, water/zerotropic mixture in tube-in-tube con-

denser, and two-phase pressure drop of refrigerants in

horizontal tubes [1634–1639].
20. Heat transfer—general applications

20.1. Fluidized beds

The relationship between the parameters of a fluid-

ized bed and the heat transfer to a body immersed in

it are described by Al-Busoul [1640]. Another paper

[1641] on the same relationship models the fluidized

bed as a medium consisting of a double-particle layer

and an even porous layer, and shows that radiative heat

transfer is significant. A blast furnace is simulated with

the SIMPLE algorithm using a multi-fluid model in

which all phases are treated as fluids [1642]. A correla-

tion was developed for the heat transfer coefficient on

wing walls and water walls of circulating fluidized bed

boilers [1643]. LDA measurements are used to calculate

particle kinetic stresses in circulating fluidized beds

[1644]. A novel semi-confined porous radiant recircu-

lated burner (PRRB) concept is presented that reduces

losses due to open-flame combustion [1645]. The effect

of latent heat of fusion on heat transfer in fluidized-

bed coating of thin plates was studied by Leong

[1646]. The effect of pressure and average suspension

density on bed-to-wall heat transfer in a pressurized cir-

culating bed was studied in [1647].

20.2. Food processing

A numerical analysis was done of temperature vari-

ability in cooled biscuits using the Monte Carlo method

[1648]. Experiments using infrared and microwave radia-

tion showed that infrared radiation may increase or de-

crease the amount of surface moisture on the food/

porous medium depending on the medium properties

[1649]. A one-dimensional model was developed, based

on experiments, that described the cooking of beef patties

using far-infrared radiation over a range of fat contents

[1650,1651]. Models were developed for deep-fat frying

of cassava [1652] and tortilla chips [1653]. Wang and

Sun [1654] perform finite element analysis to compare

the cooling of cookedmeats under different environments

offered by slow air, air blast and water immersion cooling

units. Zitny et al. [1655] present a model that seeks to ex-

plain some surprising pressure and temperature varia-

tions observed during pressure baking of starchy foods.

20.3. Nuclear reactors

Several papers dealt with thermohydraulics of the

cooling flow in nuclear reactors. Chung et al. [1656]
present a new criterion for choked flow in the bubbly re-

gime of two-phase flow, based on characteristic analysis

of the hyperbolic equations arising out of a two-fluid

model. A model for critical heat flux (CHF) for low flow

rates in a small diameter tube that takes into account

accident conditions, such as reflood transients, is pre-

sented by [1657]. The effects of inter-wrapper flow, in

which cold sodium is provided in an upper plenum of

reactor vessel and covers the reactor core outlet, on

the core temperature distribution is studied numerically

[1658]. Legradi and Aszodi [1659] present an analysis of

the natural convection flow between the reactor pressure

vessel and the cooling pond of the reactor in accident

conditions. Flow characteristics, axial dispersion, power

and temperature distribution in toroidal loop reactors

are analysed [1660]. Nayak et al. [1661] consider the sta-

bility of a natural circulation pressure tube type boiling

water reactor with respect to two types of density-wave

instabilities. Other papers include: natural circulation

characteristics of a marine reactor in rolling motion

[1662], thermal analysis of plutonium storage containers

[1663], effects of coolant injection into the reactor con-

tainment under pressure vessel failure conditions and es-

cape of molten fuel into the containment [1664], and

finite element modeling of non-linear steady-state

three-dimensional heat transfer in nuclear fuel rods

[1665].

20.4. Aerospace

A few papers dealt with heat transfer problems asso-

ciated with reentry of a vehicle into the atmosphere:

optimization of high-temperature multilayer insulation

[1666], effects of surface catalysis on stagnation heat

transfer for entry into a CO2 atmosphere [1667], and de-

sign of a heat shield required to function as both an

ablator and a structural component [1668].

20.5. Electronics cooling

Papers dealing with improved heat sinks for cooling

electronic systems included those on: experimental data

obtained for heat transfer to finned metal foam sinks

[1669], optimization of single and double layer micro-

channel heat sinks performed using existing correlations

[1670], a sink with spatially uniform temperatures in

both streamwise and transverse directions [1671], and

heat transfer enhancement from enclosed discrete com-

ponents using pin-fin heat sinks [1672]. Ma and Peterson

[1673] show that heat transfer can be considerably in-

creased if the base of a heat sink is fabricated as a heat

pipe, and that as the heat sink length increases, the effect

of increased thermal conductivity reaches a predictable

limit. Other approaches used to enhance heat transfer

were: use of metallic solid–liquid phase change materials

(PCM) inside cooling microchannels of semiconductor
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devices [1674], addition of microfabricated boiling-

enhancement structures in heat spreaders [1675], active

control of transient heat transfer loads through single-

phase microfluidics [1676], and a new type of oscillating

vortex generator in cooling channels [1677].

20.6. Buildings

A set of correlations are presented for use in the

ESP-r simulation program for modeling convective heat

transfer at internal building surfaces [1678]. The energy

performance of single-pane windows for different kinds

of glazing was investigated [1679]. The effects of mois-

ture through precipitation, soil type, foundation insula-

tion, water table depth, and freezing on the heat transfer

from the building foundation are investigated for two

types of foundations: a slab-on-grade type, and a base-

ment [1680]. The Luikov equations for mass transfer

are solved for temperature distribution in a room, with

different thermophysical properties of the spruce walls

as influenced by moisture, along with the effects of vapor

diffusion [1681]. The effect of mass and insulation loca-

tion on heating and cooling loads is analyzed in build-

ings with massive exterior envelope components for six

characteristic wall configurations [1682]. Lorente and

Bejan [1683] present an optimization procedure for

arriving at the internal structure of a wall that maintains

a given structural strength while maximizing the thermal

resistance of the wall. The effects of edge insulation on

the ground heat transfer from buildings is investigated

[1684].

20.7. Gas turbines/fuel cells

Several papers dealt with heat transfer in gas turbine

engines. Azad et al. [1685] experimentally show that dif-

ferent arrangements of squealer on turbine blade tips

can significantly alter the flow and heat transfer distribu-

tion on the tip. Didier et al. [1686] present time-resolved

heat transfer measurements that show the effect of pass-

ing wakes, and shock impingement on the leading edge.

The data of Kumar and Kale [1687] indicate that for

ceramic-coated turbine blades, uncertainty in heat trans-

fer coefficient estimation does not significantly affect me-

tal temperatures when radiative heat transfer is included

in the analysis. The paper by Willenborg et al. [1688]

shows that using a honeycomb facing in a stepped laby-

rinth seal significantly reduces heat transfer to the plat-

form as opposed to a smooth facing.

Various SGS models have been used to simulate tur-

bulent fluid flow and heat transfer in piston engines, and

it was found that the Van Driest wall damping model

matched best with experimental data [1689]. Two papers

[1690,1691] model heat and mass transfer in the porous

cathode of a proton exchange membrane fuel cell for

various operating conditions and design parameters.
Koh et al. [1692] infer from CFD analysis that heat

transfer in a molten carbonate fuel cell stack is well char-

acterized by a two-dimensional model along the axial

and vertical coordinates rather than on the cell plane.

20.8. Geophysical studies

The formation of an exocontact thermal field of a

magmatic intrusion is modelled as a spreading of a ther-

mal source delta-function [1693], and the resulting solu-

tions of the heat-transfer equation are correlated with

diffusion, thermal and kinetic parameters of an exocon-

tant zone of a magmatic body. Ice-shell thicknesses of a

few kilometers and ocean depths of a few hundreds of

kilometers are calculated for steady-state models of tidal

dissipation in Europa�s ice shell [1694]. Data from exper-
iments and direct numerical simulation are compared

for a stratified store entrainment process [1695]. Cooling

rate profiles of rhyolitic samples in nitrogen and air are

used to make predictions of temperature in volcanic

eruption columns of Mono crater [1696]. Numerical sim-

ulation of heat and mass transfer from hot dry rock to

flowing water in a circular fracture was conducted to

estimate the concentration of the dissolved silica at a

production well [1697]. Plate tectonics and data from

global seismic tomography are used as input boundary

conditions to simulate global mantle convection [1698].

20.9. Manufacturing and processing

Welding. Becker and Potente [1699] present data to

be used for developing a model of temperature profiles

in anisotropic polymers during laser transmission weld-

ing. A multiple reflection model has been developed

[1700] based on the level set method and ray tracing

technique to investigate the energy transfer from the

laser to the workpiece for the case of a cavity. The effect

of an externally applied longitudinal magnetic field on

the liquid metal in an arc welding process has been

investigated numerically [1701]. Mahrle and Schmidt

[1702] numerically predict temperature and velocity dis-

tributions as well as weld pool geometry using a steady-

state model for transport phenomena in the fusion zone

of deep penetration laser beam welded joints. A three-

dimensional transient model is developed for the sin-

gle-pass laser alloying process that allows prediction of

species concentration in the molten metal pool, as well

as across the cross-section of the solid alloy [1703].

Casting. A three-dimensional inverse analysis is

adopted to estimate the unknown conditions (heat

source in the grinding zone, heat transfer coefficient)

on the workpiece surface during a grinding process

[1704]. Heat transfer experiments on enhancing heat

transfer with a high pressure water jet impinging on

the contact zone in creep feed grinding showed signifi-

cant improvements in material removal rate [1705].
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Drawing. A novel mass-balance free-surface location

technique along with shear-thinning and viscoelastic

flow models for melt material is used for evaluating

annular wire-coating flows with pressure- and tube-tool-

ing [1706]. Cheng and Jaluria [1707] investigate the ther-

mal transport and flow in optical fiber drawing at high

draw speeds in a cylindrical graphite furnace, including

necking and the influence of furnace geometry. The ef-

fects of surface or volumetric radiative flux, emissive

power, angle of incidence, and internal reflection on

the temperature and degree of cure on graphite/epoxy

and glass/epoxy cylinders are evaluated in [1708].

Rolling. A pressure-correction algorithm of a tran-

sient finite element form is applied to analyse the flow

instabilities that arise during reverse-roller coating

[1709]. Jaklic et al. [1710] show that the thin oxide scale

that forms as a billet is transported from the furnace to

the rolling mill significantly affects the temperature pro-

file. The effects of heat of deformation, the work-roll

temperature, the rolling speed, and the heat transfer

coefficient between the work-roll and the metal are

quantified in a study of the temperature profiles of slabs

in hot rolling [1711].

Machining. A study finds that the cutting force is re-

duced, surface finish improved, and chip width is re-

duced when machining a workpiece with the use of

high-pressure coolant [1712]. In light of recent research

that shows that the heat transfer coefficient is periodic

over a flexible vibrating body, the electrodynamic

machining (EDM) process is evaluated afresh, and it is

explained why EDM wires undergo thermal buckling

at low axial transport speeds and a series of transport

instabilities at high axial transport speeds [1713].

Forging. Chang and Bramley [1714] describe a deter-

mination of the heat transfer coefficient at the work-

piece-die interface for the simple upsetting forging

process. The heat transfer data obtained from quenching

experiments on nickel superalloys used in aerospace

applications are used to study the influence of non-uni-

form spray distributions on residual stress patterns

[1715]. Models of the heat transfer in the hot pressing

process of ceramic materials have been built theoreti-

cally and designs of hot pressing technology are made

through the study of the temperature field in the ceramic

blanks [1716]. The approach aims to improve the quality

of predictions through more accurate evaluation of the

input parameters in the simulation of the sheet reheat

phase of the thermoforming process [1717].
21. Solar energy

Papers are broadly divided into solar radiation, low-

temperature solar applications, buildings, and high-tem-

perature solar applications. Papers on solar energy that

do not focus on heat transfer, for example, papers on
photovoltaics (except for those that deal with building

integrated components), wind energy, architectual as-

pects of buildings, and control of space heating or cool-

ing systems are not included.

21.1. Radiation

Many papers in this category present modified mod-

eling approaches to evaluate or use measured solar data.

Driesse [1718] tested a relationship developed by Suer-

cke in 2000 between sunshine duration and radiation

and found that it provides accurate average values. A

neural network model that generates synthetic hourly

irradiation is compared to other synthetic generation

methods in [1719]. A bi-exponential probability density

function is proposed for predicting clearness indices by

Ibanez [1720]. Ineichen [1721] proposes a new formula-

tion for the Linke turbidity coefficient. Muneer [1722]

proposes a correction factor for calibration of the sha-

dow band pyranometer based on an anisotropic sky-dif-

fuse distribution theory. Yang [1723] presents a model to

estimate global irradiance from upper-air humidity.

Myers [1724] presents a method to more accurately cal-

ibrate pyranometer measurements using low thermal-

offset radiometers.

21.2. Low temperature applications

Low temperature solar applications include solar

water heating, solar space heating and cooling, solar

desalination, solar cooking, and agricultural applica-

tions of solar energy. Within this category, papers on

non-concentrating solar thermal collectors and thermal

storage are discussed.

21.3. Flat-plate and low-concentrating collectors

Solar air heaters of various geometries are considered

in numerous papers. Bhagoria [1725] and Momin [1726]

developed forced convection Nusselt number and fric-

tion factors for absorber plates with ribs. Numerical

solutions for an absorber in a porous medium are pre-

sented in [1727]. Optical properties of porous medium

that might be considered for solar air collectors are pre-

sented in [1728]. Khedari [1729] developed Nusselt and

Reynolds–Rayleigh number correlations for free convec-

tion in an open ended rectangular channel. Yeh [1730]

presents data and a model for a solar air heater with

finned upper and lower flow channels. Several papers

consider simplified methods to predict collector effi-

ciency [1731–1734]. Li et al. [1735] consider a flat-plate

collector in which the absorber is immersed in an absor-

bent bed to provide both heating and cooling.

Hybrid photovoltaic/solar thermal collectors con-

tinue to gain attention. Sanberg [1736] derives analytical

expressions for velocity and temperature rise in air gaps
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behind vertically-mounted photovoltaic panels. Zondag

[1737] compares transient and steady-state models for

combined photovoltaic–thermal collectors. Tests of hy-

brid photovoltaic/thermal solar collectors are presented

in [1738,1739].

Other innovative concepts use polymeric materials of

building integrated collectors. Models of collectors with

polymer absorbers are presented in [1740,1741]. Burch

[1742] uses indices based on temperature, humidity and

time to predict damage and weathering of polymeric

materials. Analysis of various parameter on perfor-

mance of transpired solar collectors are presented in

[1743–1745].

21.4. Water heating

Innovations in the design of systems for heating

water are proposed. Heat pipe water collectors are

analyzed by Mathioulakis [1746] and Yang [1747].

Groenhout [1748] proposes a double-sided flat plate ab-

sorber mounted on stationary concentrators. Experi-

ments indicate that heat losses are reduced compared

to conventional designs. Aye [1749] compares a vapor

compression heat pump to other water heating options

for application in Australia. A compound parabolic con-

centrating integral collector storage system is tested by

Tripanagnostopoulos et al. [1750]. Rincon [1751] pro-

poses a two-dimensional concentrator for the classic

compound parabolic concentrator.

Models of solar water heating include a comparison

of high and low efficiency systems [1752], a simplified

model of thermosyphon systems [1753] an optimization

design tool for large systems [1754], and a TRNSYS

model of an indirect thermosyphon system with a man-

tle heat exchanger. Knudsen [1755] considers the effect

of water consumption profile on system performance.

Meir [1756] presents a method to predict the solar gain

of a large solar water heating system using the storage

as a calorimeter.

21.5. Space heating and cooling

Papers address cooling and dehumidification. Gross-

man [1757] reviews current trends in solar-powered air

conditioning. Models or performance of specific absorp-

tion cooling and dehumidification systems are presented

in [1758–1767]. A Second Law analysis is presented by

Izquierdo [1768]. Zhu [1769] investigates methods to re-

duce the contact resistance between the absorber surface

and absorbent. Liu [1770] measured boiling heat transfer

in a concentric tube.

21.6. Solar desalination and solar ponds

Papers in this section are restricted to systems that use

solar energy. A model of behavior due to radiation tran-
sients is presented by Haddad [1771]. Refs. [1772–1774]

aim to provide a better understanding of heat and mass

transfer in various solar stills. Agha [1775] predicts the

ratio of the evaporation pond to that of a salt gradient so-

lar pond in a coupled arrangement. Hermann [1776]

tested a collector made of selective surface glass tubes

with a reflector to improve performance. Zheng and Ge

[1777] tested an active regenerative solar still indoors with

a solar simulator and found the performance was 2–3

times greater than a conventional basin-type solar still.

21.7. Storage

Most papers in this section address latent heat stor-

age. Spherical ice storage is investigated in [1778]. Eutec-

tic mixtures of lauric and stearic acids [1779], capric and

lauric acids [1780] are evaluated. Phase change materials

combined with conductive materials are considered by

[1781,1782]. Numerical results indicate that a finned

tube latent heat storage models performs better than a

tube without fins [1783]. Periodic phase-change of a slab,

a process dominated by conduction, is measured by

Casano [1784]. Cjibana [1785] tested a water–silicone

oil emulsion to make ice.

Sensible heat storage papers for water heating con-

sider natural convection in a vertical cylindrical enclo-

sure [1786], and the use of multiple tank storage units

to achieve thermal stratification [1787]. Badescu [1788]

models storage combined with a solar heat pump. An

exergy analysis of an ammonia synthesis reactor for an

ammonia-based thermochemical storage system is pre-

sented by Kreetz [1789]. A review of exergy and entropy

generation minimization and examples drawn from sen-

sible and latent heat storage are presented by Bejan

[1790].

21.8. Water treatment

A simple wood hot box was evaluated as a water dis-

infecting system by Saitoh [1791]. Work at the Univer-

sity of Florida considered the efficacy of dyes as

sensitizing agents for solar photochemical detoxification

and calibration of a UV radiometer to measure radia-

tion from black lights used to simulate the solar UV

spectrum [1792,1793].

21.9. Solar agricultural applications

Experimental evaluation of a natural convection

solar dryer and biomass burner were conducted [1794].

21.10. Buildings

This section includes papers on building integrated

solar systems, heat transfer in building components,

and glazings.
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Coatings for glazing and other window treatments

are discussed in numerous papers. Controlling the ex-

haust flow rate in triple-glazed window systems to re-

duce the space heat gain was examined in [1795]

Naylor [1796] presents flow and temperature visualiza-

tion of free convection about louvered blind adjacent

to an isothermal vertical plate (simulating a window).

Thermotropic layers to reduce solar transmittance are

measured in [1797]. Optical and thermal properties of

granular silica aerogels sandwiched between polymer

skins filled with krypton are reported in [1798]. Experi-

ments to determine time and local averaged mixed con-

vection heat transfer coefficients in a vertical transparent

channel with horizontal ventilation gratings is presented

by Zollner [1799]. An accessory to a spectrophotometer

which permits accurate measurement of directional

reflectance and transmittance is presented by Van Nihn-

atten [1800].

Li [1801] uses DOE-2 to illustrate the advantage of

daylighting. Scartezzini [1802] tested the use of non-

imaging optics to provide diffuse daylighting.

Papers that present modeling results for the building

envelope components include an evaluation of roofs

with a polystyrene layer [1803], a review of heat transfer

through walls with relatively complicated internal struc-

ture [1804], ventilation in the ThermoDeck concrete

floor system [1805], and a model of transient conduction

in structural walls [1806]. A model of heat and mass

transfer in whole buildings is presented in [1807]. Simpli-

fied methods to model building thermal processes are

presented by [1808,1809]. Wen [1810] analyzes the spa-

tial distribution of absorbed solar energy in a room.

Temperatures of homes typical of northwestern Mexico

are modeled by Porta-Gandara [1811]. Performance of a

passive thermal wall in a full scale room is measured in

[1812]. Passive ventilation of a one-storey building by a

hot element is suggested for removal of toxic gases

[1813]. Infrared thermal imaging of thermochromic

coatings for building facades are presented in [1814]

Building integrated collectors made of concrete slabs

[1815] and natural convection water loops that act as

thermal diodes are tested.

21.11. High temperature applications

High temperature solar thermal applications require

use of concentrated solar energy. Uses include electricity

generation, thermochemical reactors and industrial pro-

cess heat. Papers address processes as well as system

components such as heliostats, concentrators, and

receivers/reactors.

A special issue of the ASME Journal of Solar Energy

Engineering in May 2002 was devoted to solar thermal

power. Papers addressed parabolic trough technology,

central receivers, and thermochemical reactors and

processes.
The current state-of-the-art of parabolic trough solar

collector power technology and current R&D efforts are

reviewed in [1816,1817]. Recent experimental and mod-

eling efforts as part of the European program aimed at

direct steam generation are presented in [1818–1820].

A method to estimate the optimized parabolic trough

field size as a function of solar irradiance is presented

in [1821] Testing of materials and safety tests of a molten

salt thermal storage system for parabolic trough plants

are discussed in [1822]. A system that generates steam

form compound parabolic concentrators is modeled in

[1823].

An update on solar central receiver systems is pro-

vided by Romero [1824]. Vant-Hull [1825] gives an over-

view of molten-salt central receivers and presents design

methods to reduce the peak flux to acceptable values in a

cost effective manner. Barth et al. [1826] describe a pump

for such a system.

Tests of a prototype non-imaging focusing heliostat

consisting of a number of grouped slave mirrors are pre-

sented in [1827] Measurement techniques for concen-

trated solar power are presented in [1828–1830] and

for dish/Stirling systems in [1831]. Solar brightness pro-

files obtained from sites in France, Germany, and Spain

were compared to measurements taken in the 1970s and

a statistical data base was developed for calculating the

influence of variable conditions on solar concentrating

systems [1832].

Solar hybrid power generation systems investigated

include a gas turbine-based tower system [1833], a triple

cycle with a high-temperature MHD generator [1834],

and hybrid dish/Stirling systems [1835]. Kribus [1836]

discusses a micro system on the order of a few Watts

for use with solar or fuel-derived heat. Refs.

[1837,1838] provide experimental data for a 200 cm

diameter fiber optic mini-dish.

Papers on themochemical process cover a variety of

topics including methane reformation [1839], reduction

of zinc-oxide [1840], and glazing of thermal barrier coat-

ings [1841]. Solar reactor/receiver designs are discussed

in [1842,1843].

The use of concentrated solar energy to conduct

material testing is discussed and test results for copper

alloy intended for the combustion chamber of cryogenic

motors are given in [1844].
22. Plasma heat transfer and MHD

22.1. Fundamental investigations

Two publications address the question of transport

phenomena in thermal plasmas. An expression for com-

bined diffusion coefficients in a two-temperature plasma

has been derived, and it has been demonstrated that the

derived expressions for the ambipolar diffusion are con-
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sistent with conservation of mass laws [1845]. Using the

approach of describing the radiation transport in emit-

ting absorbing plasmas with the method of partial char-

acteristics, values for net emission coefficients have been

calculated for cylindrical argon plasmas in the tempera-

ture range between 1000 and 30,000 K [1846], thus pro-

viding a set of data for solving the energy conservation

in such plasmas without the need for solving the radia-

tion transport equation. Three-dimensional descriptions

of arcs with super-imposed flows have appeared, both

for the description of general arc behavior and for spe-

cific applications. Li and Chen [1847] describe the arc

in a channel with a constricted anode attachment assum-

ing laminar flow, finding good agreement of their pre-

dicted arc voltage and anode attachment position with

experimentally observed values. The same authors have

extended their model to include the turbulent plasma jet

with injection of cold gas and particulates from one side

[1848]. A similar model is presented by Ramachandran

and Nishiyama [1849]. The plasma induced flow pat-

terns are modeled in a rf glow discharge reactor, and

the effect of the applied frequency and discharge voltage

on this flow is demonstrated [1850]. Christlieb and Hit-

chon [1851] present a model for heat transfer in a rare-

fied plasma between two parallel plates based on a

three dimensional solution of the Boltzmann equation.

For using Thomson scattering in atmospheric pres-

sure plasmas for determination of electron temperature

and density, a new approach has been developed which

results in experimental data that are consistent with

those derived from other techniques [1852]. A descrip-

tion of the cathode region of atmospheric pressure arcs

is presented by Benilov [1853]. Furukawa et al. [1854]

present a description of reduced heat transfer from an

arc to a molten copper anode when copper vapor is pres-

ent. A review of electrode phenomena and their influ-

ence on plasma torch design is presented in [1855].

22.2. Specific applications

Plasma investigations continue to address more and

more specific applications. Plasma spraying is one appli-

cation which has been described in a number of models,

and some fundamental issues of the process have been

investigated experimentally. Modeling of the coating

formation process has made amazing advances, as dem-

onstrated by the three dimensional description of the

splatting and solidification of liquid metal droplets on

uneven surfaces [1856]. A similar model describes the

coating formation using a somewhat different approach,

with the major unknowns being used as parameters

[1857]. Two modeling efforts have been directed at

describing the entire spray process, from particle injec-

tion to coating formation [1858,1859], and both models

aspire to provide a tool for process optimization. The ef-

fect of arc instabilities in a plasma spray torch on the
coating characteristics are described in [1860], and the

instabilities are related to the fluid dynamic boundary

layer inside the anode nozzle. A combined experimental

and theoretical study has led to the description of evap-

oration of iron spray particles and the resulting forma-

tion of iron oxide fumes [1861]. A similar but purely

theoretical approach has been used for the description

of the surface oxidation of molybdenum particles and

subsequent evaporation of the oxide [1862]. The forma-

tion of thermally sprayed silicon nitride layers by using a

composite spray powder consisting of silicon nitride par-

ticles embedded in a complex binder matrix is described

in [1863]. Two publications deal with wire arc spray

coating processes, one describes theoretically the forma-

tion of spray formed preforms [1864], while the other

presents a model of the entire spray process, including

the compressible flow model for the supersonic upstream

part of the flow, the three dimensional description of the

interaction of the arc with the flow, the turbulent flow in

the jet, the droplet formation from the anode and from

the cathode in two different models, and the droplet tra-

jectories in the turbulent jet [1865].

Three models are described for welding arcs. One of

these considers a tungsten inert gas (TIG) welding pro-

cess and includes in the model the cathode and the mol-

ten weld pool, describing the different forces on the liquid

metal [1866]. The second one by the same authors con-

centrates on describing the interaction between the arc

and the molten metal anode [1867]. The third one de-

scribes details of the anode boundary layer processes

and confirms previous observations about the impor-

tance of the electron transport associated heat flux

[1868]. Electrode processes in high intensity discharge

lamps are described by Dabringhausen et al. [1869] in a

series of papers highlighting the electrode fall measure-

ments and modeling results. A model based on an LTE

description of a microwave driven high pressure sulfur

lamp is presented by Johnston et al. [1870], and the heat

transfer contributions from conduction and molecular

radiation are described. Three publications deal with

plasma heat transfer in the three applications of reentry

space flight vehicles into the earth atmosphere, micro-

electronic processing, and acetylene synthesis frommeth-

ane. For the reentry simulation, an inductively coupled

plasma source operated with oxygen and carbon dioxide

is described [1871]. The study of an inductively coupled

wafer etch reactor demonstrated the effect of ion bom-

bardment on the heat transfer to a wafer [1872]. An

improvement of conversion efficiency and yield of an

acetylene synthesis reactor could be achieved through

changes in the fluid dynamic design of the reactor [1873].

22.3. Magnetohydrodynamics

The effect of a magnetic field on the natural con-

vection heat transfer in a liquid metal is investigated
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experimentally and numerically, and relations between

Nusselt number and Raleigh number are derived

[1874]. The same group describes a numerical model of

a liquid metal pool during electron beam evaporation,

and how the convective heat losses from the crucible

can be controlled using external magnetic fields [1875].

In an experimental study of a closed loop thermosyphon

arrangement for electrolyte solutions, the Hall parame-

ter for these solutions have been determined [1876]. An-

other study focuses on the free convection flow in a

liquid boron oxide encapsulent layer above a molten

semiconductor compound material, and describes the

influence of a vertical magnetic field on the convection

in the semiconductor liquid [1877]. Two papers deal with

three-dimensional simulations of the free convection

flows in liquid metal filled cubic enclosures, once with

heating on opposite vertical walls [1878], and once with

uniform internal heating [1879].

Unsteady MHD flow and heat transfer is simulated

for flow over an infinite rotating disk with varying angu-

lar velocity, showing the increase in heat transfer with

acceleration [1880], and a theoretical solution is ob-

tained for convection along a moving vertical surface

with suction [1881]. Mixed convection for flow in a ver-

tical channel with symmetric or asymmetric heating is

described by Chamkha [1882]. Another study concerns

itself with the unsteady flow of a conductive fluid con-

taining particles between parallel plates with a perpen-

dicular magnetic field, with variations in the viscosity

and electrical conductivity [1883]. Another discussion

of MHD flow in a porous medium between vertical

plates is provided by Singh [1884]. Radiation effects on

free convection MHD flow is described by Ghaly

[1885], and for unsteady flow with variable viscosity by

Seddeek [1886].
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